Electricity and Circuits

An electric circuit is a closed loop around which charges flow.

A circuit consists of an energy source connected to a device that uses energy.

In a circuit, the charges that are moving are electrons.

Charges in Motion

Electric Current (I)

The net amount of charge that passes through a device per unit time at any point.
Current is defined as:

$$
I=\frac{\Delta q}{\Delta t}
$$

Electric current is measured in coulombs per second or amperes. $\quad(1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s})$

Schematic Diagrams

The direction of current is by convention the direction a positive charge moves through the circuit, which is towards the negative terminal of the battery.

Batteries (emf)

In order to produce an electric current in a circuit, a potential difference is needed. Batteries are one way of providing a difference in potential (called electromotive force or emf). Potential difference is called voltage ΔV and is measured in units of volts (V).

$$
\mathrm{V}[=] \frac{\mathrm{J}}{\mathbf{C}}
$$

Ohm's Law

Georg Ohm (1787-1854)

- Current depends upon the conductivity of the material.
- It is more common to talk about resistance R (inverse of conductivity) and express this relationship as:

$$
I=\frac{\Delta V}{R} \text { or } \Delta V=I \cdot R
$$

- The unit for resistance is called the ohm and is abbreviated Ω (omega)

Voltage

Ohm's Law is often written as:

$$
V_{a b}=I \cdot R
$$

where:

$$
V_{a b}=V_{a}-V_{b}=\Delta V
$$

For power sources: For resistive loads:
$\xrightarrow[I]{\stackrel{\Delta V_{+}}{b}}$
$\Delta V=V_{a}-V_{b}=V_{a b}>0$
$\xrightarrow[I]{\stackrel{b^{+}}{\stackrel{-}{-}-a}}$
$\Delta V_{R}=V_{a}-V_{b}=V_{a b}<0$

Electric Power

$\operatorname{Power}(P)$ is the rate energy is transformed in a device.

$$
P=I \Delta V
$$

The unit for power is a J / s or watt $(1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s})$.

For resistors, combining the above with Ohm's Law results in:

$$
P=I^{2} R=\frac{\Delta V^{2}}{R}
$$

Measuring Voltage

- Voltmeters are placed in parallel with the points between which the voltage measurement is made
- Voltmeters have a very high resistance and do not affect the circuit (they draw a very small current)

Measuring Current

- Ammeters are placed in series with the device through which the current measurement is made
- Ammeters have a very low resistance and do not affect the circuit (the voltage drop is very low)

Resistors in Series

$$
\begin{gathered}
\underbrace{V_{a b}=}_{b} \underbrace{I}_{R_{1}} \underbrace{C}_{R_{1}+\Delta V_{2}+\Delta V_{3}=I R_{1}+I R_{2}+I R_{3}}=V_{a b}=I\left(R_{1}+R_{2}+R_{3}\right) \\
I=\frac{V_{a b}}{R_{1}+R_{2}+R_{3}}=\frac{V_{a b}}{R_{s}}
\end{gathered}
$$

Resistors in Series (Voltage Divider)

$$
I=\frac{V_{a b}}{R_{1}+R_{2}}
$$

$$
\Delta V_{1}=I R_{1}=\frac{V_{a b} R_{1}}{R_{1}+R_{2}} \quad \Delta V_{2}=I R_{2}=\frac{V_{a b} R_{2}}{R_{1}+R_{2}}
$$

Example 3:
A 120Ω, a 60Ω, and a 40Ω resistor are connected in series with a 110 V power source.
a.) Draw a schematic diagram.
b.) What is the equivalent resistance of the circuit?
c.) What is the current from the power source?
d.) What is the current through each resistor?
e.) What is the voltage drop across each resistor?

Resistors in Parallel

- Voltage drop is the same across each resistor and the same as the voltage drop across the equivalent resistance
- Current is different through each resistor, the higher the resistance the lower the current

$$
\frac{1}{R_{p}}=\sum_{i} \frac{1}{R_{i}}
$$

Kirchhoff's Rules

2.) Loop Rule (Conservation of energy)

The sum of the changes in potential around any closed path of a circuit is zero.

