Electric Circuits

An *electric circuit* is a *closed loop* around which charges flow.

A circuit consists of an energy source connected to a device that uses energy.

In a circuit, the charges that are moving are *electrons*.

Electricity and Circuits

1

3

5

Electricity and Circuits

Electricity and Circuits

Charges in Motion

Electric Current (I)

The net amount of charge that passes through a device per unit time at any point. Current is defined as:

 $I = \frac{\Delta q}{\Delta t}$

Electric current is measured in *coulombs per* second or *amperes*. (1 A = 1 C/s)

Electricity and Circuits

Batteries (emf)

In order to produce an electric current in a circuit, a potential difference is needed. Batteries are one way of providing a difference in potential (called *electromotive force* or *emf*). Potential difference is called voltage ΔV and is measured in units of volts (V).

Electricity and Circuits

Schematic Diagrams

The *direction of current* is by convention the *direction a positive charge moves* through the circuit, which is towards the negative terminal of the battery.

Electricity and Circuits

Ohm's Law

Georg Ohm (1787-1854)

- Current depends upon the conductivity of the material.
- It is more common to talk about *resistance R* (inverse of conductivity) and express this relationship as:

• The unit for resistance is called the *ohm* and is abbreviated Ω (omega)

Electricity and Circuits

6

4

Voltage

Ohm's Law is often written as:

$$V_{ab} = I \cdot R$$
$$V_{ab} = V_a - V_b = \Delta V$$

where:

For power sources: For resistive loads:

Electricity and Circuits

Resistance (R) and Resistivity (ρ)

It can be experimentally determined that the resistance of a wire is directly proportional to its length l and inversely proportional to its cross-sectional area A.

The proportionality constant ρ is called the *resistivity* and depends upon the material used for the wire.

ρ [=] $\Omega \cdot m$

Electricity and Circuits

Electric Energy

Power (*P*) is the rate energy is transformed in a device.

 $P = I \Delta V$

Electric Power

The unit for power is a J/s or watt (1 W = 1 J/s).

For *resistors*, combining the above with Ohm's Law results in:

$$P = I^2 R = \frac{\Delta V^2}{R}$$

Electricity and Circuits

9

11

Measuring Voltage

- *Voltmeters are placed in parallel* with the points between which the voltage measurement is made
- Voltmeters have a very high resistance and do not affect the circuit (they draw a very small current)

The total energy E (in joules) is the power in watts times the time in seconds.

Electricity and Circuits

Measuring Current

- Ammeters are placed in series with the device through which the current measurement is made
- Ammeters have a very low resistance and do not affect the circuit (the voltage drop is very low)

Electricity and Circuits

12

8

Resistors in Series

$$\begin{array}{c}
I \\
\bullet \\
b \\
R_1 \\
R_2 \\
R_3 \\
a \\
a
\end{array}$$

 $V_{ab} = \Delta V_1 + \Delta V_2 + \Delta V_3 = IR_1 + IR_2 + IR_3$

$$V_{ab} = I(R_1 + R_2 + R_3)$$
$$I = \frac{V_{ab}}{R_1 + R_2 + R_3} = \frac{V_{ab}}{R_8}$$

Electricity and Circuits

13

15

Resistors in Series

$$\xrightarrow{I} \xrightarrow{} \\ \xrightarrow{} \\ R_1 \quad R_2 \quad R_3$$

- *Current is the same* through each resistor and is the same as the current in the equivalent resistance
- Voltage drop across each resistor is different unless the resistance is the same.

Electricity and Circuits

14

Resistors in Series (Voltage Divider)

$$\Delta V_1 = IR_1 = \frac{V_{ab}R_1}{R_1 + R_2} \qquad \Delta V_2 = IR_2 = \frac{V_{ab}R_2}{R_1 + R_2}$$

Electricity and Circuits

Example 3: A 120 Ω , a 60 Ω , and a 40 Ω resistor are connected in series with a 110 V power source.

a.) Draw a schematic diagram.

Ι

- b.) What is the equivalent resistance of the circuit?
- c.) What is the current from the power source?
- d.) What is the current through each resistor?
- e.) What is the voltage drop across each resistor?

Electricity and Circuits

16

Example 3: $R_1 = 120 \Omega$, $R_2 = 60 \Omega$, $R_3 = 40 \Omega$, and $\Delta V = 110 V$ a.) schematic diagram in series b.) $R_{uu} = ?$

a.) schematic diagram in series

$$R_{1}$$

$$\Delta V \stackrel{+}{=} \swarrow R_{2}$$

$$R_{2}$$

$$R_{eq} = R_{1} + R_{2} + R_{3}$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 220 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 220 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

$$R_{eq} = 120 \ \Omega + 60 \ \Omega + 40 \ \Omega$$

Resistors in Parallel

$$= I_{1} + I_{2} + I_{3} = \frac{V_{ab}}{R_{1}} + \frac{V_{ab}}{R_{2}} + \frac{V_{ab}}{R_{3}} = \frac{V_{ab}}{R_{p}}$$

$$\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}$$

Electricity and Circuits

Resistors in Parallel

- *Voltage drop is the same* across each resistor and the same as the voltage drop across the equivalent resistance
- Current is different through each resistor, the higher the resistance the lower the current

Electricity and Circuits

Kirchhoff's Rules

1.) Junction Rule (Conservation of charge)

At any junction point, the sum of all currents entering the junction must equal the sum of all currents leaving the junction.

 $I_1 \qquad I_2 \qquad I_1 = I_2 + I_3$

Electricity and Circuits

20

Kirchhoff's Rules

- 2.) *Loop Rule* (Conservation of energy)
 - The sum of the changes in potential around any closed path of a circuit is zero.

$$R_{1} \xrightarrow{+} R_{3} \Delta V + \Delta V_{R_{1}} + \Delta V_{R_{2}} + \Delta V_{R_{3}} = 0$$

Electricity and Circuits

21