Example 1:

How much tension is in a string connected to a 0.25 kg ball that is being swung in horizontal circle with a radius of 1.5 meters, if the ball makes two revolutions per second?

Rotational Motion

1

Example 2:

A 2.0 kg rock is attached to the end of a 1.5 m cord with negligible mass and swung in a vertical circle at an angular speed of 1.50 rev/s.

- a.) Find the centripetal acceleration of the rock.
- b.) Find the highest and lowest values of the tension in the cord.

Rotational Motion

c.) What is the minimum speed needed in order for the rock to complete a circular path?

b.) $I_{max} = \ell$ and $I_{min} = \ell$ $a_c \uparrow T_{max}$ $F_{net} = m\bar{a}$ $T_{max} - F_g = ma_c$ $F_g \downarrow T_{min}$ $T_{min} + F_g = ma_c$ $T_{min} + F_g = ma_c$ $T_{min} = ma_c - F_g$ (top) $T_{min} = ma_c - F_g$ (bottom) $T_{max} = m(a_c + g)$ $T_{min} = m(a_c - g)$ $T_{max} = (2.0 \text{ kg}) \left(133.2 \frac{\text{m}}{\text{s}^2} + 9.8 \frac{\text{m}}{\text{s}^2} \right)$ $T_{min} = (2.0 \text{ kg}) \left(133.2 \frac{\text{m}}{\text{s}^2} - 9.8 \frac{\text{m}}{\text{s}^2} \right)$ $T_{min} = 286 \text{ N}$ $T_{min} = 247 \text{ N}$ 3

b.) $T_{max} = ?$ and $T_{min} = ?$

Example 1:

m = 0.25 kg, r = 1.5 m, and $\omega = 2 \frac{\text{rev}}{s}$, T = ?

 $v = 2 \frac{\text{rev}}{s} \left(\frac{2\pi (1.5 \text{ m})}{1 \text{ rev}} \right) = 18.85 \frac{\text{m}}{s}$

 $\begin{array}{c} \overbrace{F_{g}}{m} \overbrace{a_{c}}{T} & F_{net} = ma \\ T = m \frac{v^{2}}{r} \\ T = (0.25 \text{ kg}) \frac{\left(18.85 \text{ m}\right)^{2}}{1.5 \text{ m}} \end{array}$

Example 2: $m = 2.0 \text{ kg}, r = 1.5 \text{ m}, \text{ and } \omega = 1.5 \frac{\text{rev}}{\text{s}}$

T = 59.2 N

a.) $a_c = ?$ $a_c = \frac{v^2}{r}$ and $v = 1.5 \frac{\text{rev}}{\text{s}} \left(\frac{2\pi (1.5 \text{ m})}{1 \text{ rev}} \right) = 14.14 \frac{\text{m}}{\text{s}}$

 $a_c = \frac{\left(14.14 \ \frac{\text{m}}{\text{s}}\right)^2}{1.5 \ \text{m}} = \left[133.2 \ \frac{\text{m}}{\text{s}^2}\right]$

Example 2:

 $m = 2.0 \text{ kg}, r = 1.5 \text{ m}, \text{ and } \omega = 1.5 \frac{\text{rev}}{2}$

c.) minimum speed to complete circle v = ?The minimum speed v is when T = 0. The happens at the top where :

$$T = m(a_c - g)$$
$$0 = m\left(\frac{v^2}{r} - g\right)$$

$$\frac{v^2}{r} - g = 0$$

$$v = \sqrt{gr}$$

$$v = \sqrt{\left(9.8 \frac{m}{s^2}\right)\left(1.5 m\right)}$$

$$v = 3.83 \frac{m}{s}$$

Rotational Motion

6

	Example 3: (Roller coaster loop)	$m = 65$ kg and $a_c = 15$ $\frac{\text{m}}{\text{s}^2}$
		at the top of the loop $F_N = ?$
Example 3:		$[m] \downarrow a_c$
A girl has a mass of 65 kg and is riding on The		$F_{g} \downarrow \downarrow F_{N}$
Demon at Great America. She experiences an		$\bar{F}_{net} = m\bar{a}$
acceleration of 15.0 m/s ² at the top of the loop.		$F_N + F_g = ma_c$
What is the normal force? (i.e., How much		$F_N = ma_c - F_g$
force is pushing her rear end into the seat?)		$F_N = ma_c - mg$
		$F_N = m(a_c - g)$
		$F_N = (65 \text{ kg}) \left(15 \frac{\text{m}}{\text{s}^2} - 9.8 \frac{\text{m}}{\text{s}^2} \right)$
Rotational Motion 7		$F_N = 338 \text{ N}$

Example 4: m = 75 kg, $v = 25 \frac{m}{s}$, D = 30 m so r = 15 m (Roller coaster loop) at the bottom of the loop $F_N = ?$

Example 4:

How much force would you feel against your derrière at the bottom of a roller coaster loop with a diameter of 30 meters if your mass is 75 kg and the roller coaster car is traveling at 25 m/s?

Rotational Motion

 $F_{N} \uparrow a_{c}$ $F_{net} = m\overline{a}$ $F_{N} - F_{g} = ma_{c}$ $F_{N} = ma_{c} + F_{g}$ $F_{N} = m\frac{v^{2}}{r} + mg$ $F_{N} = m\left(\frac{v^{2}}{r} + g\right) \text{ and } F_{N} = (75 \text{ kg})\left(\frac{\left(25 \text{ m}\right)^{2}}{15 \text{ m}} + 9.8 \text{ m}\frac{m}{s^{2}}\right)$ $\overline{F_{N}} = 3860 \text{ N}$

9

Example 5:

- a.) How much force would you feel against your derrière at the top of a Ferris wheel with a radius of 30 meters if your mass is 80 kg and the Ferris wheel's speed is 15 m/s?
- b.) Assuming the same conditions as in (a), what force would you feel at the bottom of the ride?

Rotational Motion

c.) What is the maximum speed for the Ferris wheel?

 $m = 80 \text{ kg}, v = 15 \frac{\text{m}}{\text{s}}, \text{ and } r = 30 \text{ m}$ Example 5: (Ferris Wheel) a.) at the top of the ride $F_N = ?$ m $\downarrow a_{a}$ $\bar{F}_{net} = m\bar{a}$ $F_{g} - F_{N} = ma_{c}$ $F_N = F_g - ma_g$ $F_N = mg - m\frac{v^2}{r}$ $F_N = m\left(g - \frac{v^2}{r}\right)$ and $F_N = (80 \text{ kg})\left(9.8 \frac{\text{m}}{\text{s}^2} - \frac{\left(15 \frac{\text{m}}{\text{s}}\right)^2}{30 \text{ m}}\right)$ $F_N = 184 \text{ N}$

Example 5: (Ferris Wheel)

Example 6:

$$n = 80 \text{ kg}, v = 15 \frac{\text{m}}{\text{s}}$$
, and $r = 30 \text{ m}$
) maximum safe speed $v = 2$

The maximum safe speed v is when $F_N = 0$. The happens at the top where :

$$F_N = m\left(g - \frac{v^2}{r}\right)$$
$$0 = m\left(g - \frac{v^2}{r}\right)$$
$$g - \frac{v^2}{r} = 0$$
$$v = \sqrt{gr}$$
$$v = \sqrt{\left(9.8 \ \frac{m}{s^2}\right)(30 \ m)}$$
$$v = 17.15 \ \frac{m}{s}$$

 $r = 240 \text{ m and } v = 32 \frac{\text{m}}{1000}$ (Curved Road) $\mu = ?$
$$\begin{split} \ddot{F}_{net} &= m\vec{a} \\ \sum F_y &= ma \qquad \sum F_x &= ma \\ F_N - F_g &= 0 \qquad F_f &= ma_c \\ F_N &= F_g \qquad \mu F_N &= ma_c \end{split}$$
 $\begin{array}{c|c} F_N & a_c \\ \hline m & \rightarrow \\ \hline F_f \\ \hline \end{array}$ $\mu mg = ma_{c}$ $F_N = mg$ $\mu = \frac{c}{g}$ $\mu = \frac{\left(\frac{v^2}{r}\right)}{g} = \frac{v^2}{gr}$ $\mu = \frac{\left(32 \ \frac{m}{s}\right)^2}{\left(9.8 \ \frac{m}{c^2}\right)(240 \ m)} \quad \text{and} \quad \mu = 0.44$

Example 6:

A flat curve on a highway has radius of 240 m. A car rounds the curve at a speed of 32 m/s. What is the minimum coefficient of friction that will prevent skidding.

Rotational Motion

17

13