Uniform Circular Motion

Circular Motion

Centripetal Acceleration

Forces in Circular Motion

Because an object in uniform circular motion is accelerating, there must be a net force creating this acceleration. Therefore, Newton's second-law can be applied to problems involving circular motion. This net force is called a centripetal force which causes the centripetal acceleration.

$$
\sum F_{r}=m a_{c}=m \frac{v^{2}}{r}
$$

where $\sum F_{r}$ is the sum of all forces in the radial direction (towards or away from the center of the circle).

An object that moves in a circle at constant speed is said to experience uniform circular motion.

- The magnitude of the velocity remains constant.
- The direction of the velocity is continuously changing as the object moves around the circle.
- The object is accelerating because there is a change in velocity.

This acceleration is called centripetal acceleration and it points towards the center of the circle.

Centripetal Acceleration

- This component always points towards the axis of rotation.
- The centripetal acceleration is always perpendicular to tangential motion.

Rotational Motion

Forces in Circular Motion

Examples of forces that result in circular motion include:

- Tensions in cords swinging objects in circular paths.
- Normal forces on objects in motion on roller coaster loops and Ferris wheels.
- Frictional forces on objects moving on curved roads.
- Gravitational forces between objects orbiting other objects.

Vertical Motion of a Mass on a Cord
$\vec{F}_{n e t}=\boldsymbol{m} \vec{a}$

Roller Coaster Loops

Car on a Curved Road

