Electrostatics

Electrostatics

Electrostatics is the study of electrical charges that can be held in one place.

Electric Forces and Fields

1

3

5

Electric Forces and Fields

2

4

6

Electrostatics (Microscopic View)

Atoms are composed of *negatively charged electrons* surrounding a *positively charged nucleus*. The nucleus contains *protons* and *neutrons*.

The positive charge of the nucleus is exactly balanced by the negative charge of the electrons. Therefore, the atom is overall charge *neutral*.

Electric Forces and Fields

Electrostatics (Microscopic View)

Electrons can be *removed* from the atom resulting in a *positively charged ion*.

Electrons can be *added* to the atom resulting in a *negatively charged ion*.

Electric Forces and Fields

Conductors and Insulators

Materials such as metals that allow charges to move about easily are called electrical *conductors*.

Materials through which charges will not move easily are called electrical *insulators*.

Fundamental unit of charge is the *Coulomb* (C) -*electron charge* is -1.60 x 10⁻¹⁹ C -*proton charge* is +1.60 x 10⁻¹⁹ C The Electrostatic Force

Force between stationary electric charges

Force can be attractive or repulsive -Like charges repel (+,+) or (-,-) -Unlike charges attract (+,-) or (-,+)

Electric Forces and Fields

Coulomb's Law

$$F = k \frac{q_1 q_2}{r^2}$$

where:

- F Electrostatic Force between $q_1\,\mathrm{and}\,q_2\,\mathrm{(N)}$
- k Coulomb's Law Constant (9.0 x 10⁹ N·m² / C²)
- r~ Distance between q_1 and $q_2({\rm m})$
- q Electrostatic charge (C)

Electric Forces and Fields

7

9

Coulomb's Law

Both charges experience the same force.

 $F_{i,i}$ is the force that charge *i* exerts on charge *j*.

Coulomb's Law

The forces are vectors and

$$\vec{F}_{i,j} = -\vec{F}_{j,i}$$

Electric Forces and Fields

Charging by Conduction

If a negatively-charged conductor is brought into contact with a neutral conductor, electrons are transferred to the neutral conductor and it becomes *charged by conduction*.

Charged Conductor Neutral Conductor

The total charge is conserved.

Charging by Conduction

10

Induction

If a negatively-charged object brought near a neutral conductor the mobile electrons in the conductor will be repelled, leaving behind positively charged nuclei.

Charged Object Conducting Sphere

Electric Forces and Fields

Charging Conductors by Induction

Electric Forces and Fields

Charge separation can be used to charge an object without touching it.

Charged Object Conducting Sphere

Electric Forces and Fields

12

Charging Conductors by Induction

Grounding the sphere provides a source or sink for electrons.

+ Ground Charged Object Conducting Sphere

Electric Forces and Fields

13

Charging Conductors by Induction

Grounding the sphere allows electrons to leave the conducting sphere leaving behind a net positive charge.

electron + flow + + + Ground Charged Object Conducting Sphere

Electric Forces and Fields

14

Charging Conductors by Induction

Removing the ground wire while the charged object is still in place, results excess positive charge on the conducting sphere.

+

Charged Object Conducting Sphere

This process is called *charging by induction*.

Electric Forces and Fields

15