Momentum and Impulse

Momentum (p) - the product of mass and velocity of an object.

Impulse and Momentum

Conservation of Momentum

The momentum of any closed, isolated system does not change.

$$
\vec{p}_{1_{i}}+\vec{p}_{2_{i}}+\cdots+\vec{p}_{n_{i}}=\vec{p}_{1_{f}}+\vec{p}_{2_{f}}+\cdots+\vec{p}_{n_{f}}
$$

Where:
$\vec{p}_{n_{i}}=$ initial momentum vector of object n
$\vec{p}_{n_{f}}=$ final momentum vector of object n
Impulse and Momentum

- Momentum is conserved.
-Kinetic Energy is not conserved.
-When objects stick together the collision is called a completely inelastic collision.

Elastic Collisions Between Objects

- Momentum is conserved.
-Kinetic Energy is also conserved.

Conservation of Kinetic Energy

For 1-D problems involving 2 objects

$$
K E_{1_{i}}+K E_{2_{i}}=K E_{1_{f}}+K E_{2_{f}}
$$

$$
\frac{1}{2} m_{1} v_{1_{i}}^{2}+\frac{1}{2} m_{2} v_{2_{i}}^{2}=\frac{1}{2} m_{1} v_{1_{f}}^{2}+\frac{1}{2} m_{2} v_{2_{f}}^{2}
$$

1D Elastic Collisions Between Objects

(2) $\frac{1}{2} m_{1} v_{1_{i}}{ }^{2}+\frac{1}{2} m_{2} v_{2_{i}}{ }^{2}=\frac{1}{2} m_{1} v_{1_{j}}{ }^{2}+\frac{1}{2} m_{2} v_{2_{f}}{ }^{2}$

$$
\begin{aligned}
& m_{1} v_{1_{i}}^{2}+m_{2} v_{2_{i}}^{2}=m_{1} v_{1_{f}}^{2}+m_{2} v_{2_{f}}^{2} \\
& m_{1}\left(v_{1_{i}}^{2}-v_{1_{f}}^{2}\right)=m_{2}\left(v_{2_{f}}^{2}-v_{2_{i}}^{2}\right)
\end{aligned}
$$

(3) $m_{1}\left(v_{1_{i}}-v_{1_{f}}\right)\left(v_{1_{i}}+v_{1_{f}}\right)=m_{2}\left(v_{2_{f}}-v_{2_{i}}\right)\left(v_{2_{f}}+v_{2_{i}}\right)$

$$
\text { (1) } \begin{aligned}
m_{1} v_{1_{i}} & +m_{2} v_{2_{i}}
\end{aligned}=m_{1} v_{1_{f}}+m_{2} v_{2_{f}}, ~ m_{1} v_{1_{i}}-m_{1} v_{1_{f}}=m_{2} v_{2_{f}}-m_{2} v_{2_{i}}
$$

(4) $m_{1}\left(v_{1_{i}}-v_{1_{f}}\right)=m_{2}\left(v_{2_{f}}-v_{2_{i}}\right)$

In any collision, momentum is conserved and the total momentum before equals the total momentum after; in elastic collisions only, the total kinetic energy before equals the total kinetic energy after.

1D Elastic Collisions Between Objects

$$
\sum \bar{p}_{i}=\sum \bar{p}_{f}
$$

(1) $m_{1} v_{1_{i}}+m_{2} v_{2_{i}}=m_{1} v_{1_{f}}+m_{2} v_{2,}$

$$
\sum K_{i}=\sum K_{f}
$$

(2) $\frac{1}{2} m_{1} v_{1,}{ }^{2}+\frac{1}{2} m_{2} v_{2,}{ }^{2}=\frac{1}{2} m_{1} v_{1,}{ }^{2}+\frac{1}{2} m_{2} v_{2,}{ }^{2}$

1D Elastic Collisions Between Objects

(4) $m_{1}\left(v_{1_{i}}-v_{1_{f}}\right)=m_{2}\left(v_{2_{f}}-v_{2_{i}}\right)$
(3) $m_{1}\left(v_{i_{i}}-v_{1_{f}}\right)\left(v_{1_{i}}+v_{1_{f}}\right)=m_{2}\left(v_{2_{f}}-v_{2_{i}}\right)\left(v_{2_{f}}+v_{2_{i}}\right)$
(5) $\left(v_{1_{i}}+v_{1_{f}}\right)=\left(v_{2_{f}}+v_{2_{i}}\right)$
(6) $\left(v_{1_{i}}-v_{2_{i}}\right)=-\left(v_{1_{f}}-v_{2_{f}}\right)$

The relative speed of the objects before the collision equals the negative of the relative speed after the collision.

$$
\text { (1) } m_{1} v_{1_{i}}+m_{2} v_{2_{i}}=m_{1} v_{1_{f}}+m_{2} v_{2_{f}}
$$

