Momentum and Impulse

Momentum (*p*) - the product of mass and velocity of an object.

Impulse (*J*) - the product of the net force and the time interval over which the force acts.

 $\vec{p} = m\vec{v}$ units are $\frac{\mathbf{kg} \cdot \mathbf{m}}{\mathbf{s}} = \mathbf{N} \cdot \mathbf{s}$

Impulse and Momentum

2

4

6

 $\vec{J} = \vec{F} \Delta t$ units are **N** · s

Impulse and Momentum

1

3

5

Impulse and Momentum

Impulse-Momentum Theorem

Using the equations for momentum and impulse:

 $\vec{p} = m\vec{v}$ and $\vec{J} = \vec{F}\Delta t$

And recalling that:

$$\vec{F} = m\vec{a} = m\frac{\Delta\vec{v}}{\Delta t}$$
 or $\vec{F}\Delta t = m\Delta\vec{v}$

Results in the following which relates impulse to the change in momentum:

 $m\Delta \bar{v} = \Delta \bar{p}$ or $\Delta \bar{p} = \bar{F}\Delta t = \bar{J}$

Impulse and Momentum

Conservation of Momentum

The momentum of any closed, isolated system does not change.

$$\vec{p}_{1_i} + \vec{p}_{2_i} + \dots + \vec{p}_{n_i} = \vec{p}_{1_f} + \vec{p}_{2_f} + \dots + \vec{p}_{n_f}$$

Where:

 \vec{p}_{n_i} = initial momentum vector of object *n* \vec{p}_{n_f} = final momentum vector of object *n*

Impulse and Momentum

Inelastic Collisions Between Objects

- •Momentum is conserved.
- •Kinetic Energy is not conserved.
- •When objects stick together the collision is called a *completely inelastic collision*.

Impulse and Momentum

Conservation of Momentum

For 1-D problems involving 2 objects

$$p_{1_i} + p_{2_i} = p_{1_f} + p_{2_f}$$

$$m_1 v_{1_i} + m_2 v_{2_i} = m_1 v_{1_f} + m_2 v_{2_f}$$

Impulse and Momentum

Elastic Collisions Between Objects

•Momentum is *conserved*.

•Kinetic Energy is also conserved.

Collisions Between Objects

In any collision, momentum is conserved and the total momentum before equals the total momentum after; in elastic collisions only, the total kinetic energy before equals the total kinetic energy after.

Impulse and Momentum

Conservation of Kinetic Energy

Impulse and Momentum

7

9

For 1-D problems involving 2 objects

$$KE_{1_{i}} + KE_{2_{i}} = KE_{1_{f}} + KE_{2_{f}}$$

$$\frac{1}{2}m_{1}v_{1_{i}}^{2} + \frac{1}{2}m_{2}v_{2_{i}}^{2} = \frac{1}{2}m_{1}v_{1_{f}}^{2} + \frac{1}{2}m_{2}v_{2_{f}}^{2}$$

Impulse and Momentum

1D Elastic Collisions Between Objects

$$m_{1}, v_{1_{i}} = ? \text{ and } v_{2_{f}} = ? \qquad m_{2}, v_{2_{i}}$$

$$\sum \bar{p}_{i} = \sum \bar{p}_{f}$$
(1) $m_{1}v_{1_{i}} + m_{2}v_{2_{i}} = m_{1}v_{1_{f}} + m_{2}v_{2_{f}}$

$$\sum K_{i} = \sum K_{f}$$
(2) $\frac{1}{2}m_{1}v_{1_{i}}^{2} + \frac{1}{2}m_{2}v_{2_{i}}^{2} = \frac{1}{2}m_{1}v_{1_{f}}^{2} + \frac{1}{2}m_{2}v_{2_{f}}^{2}$
Impulse and Momentum

1D Elastic Collisions Between Objects

$$(2) \frac{1}{2}m_{1}v_{1_{i}}^{2} + \frac{1}{2}m_{2}v_{2_{i}}^{2} = \frac{1}{2}m_{1}v_{1_{f}}^{2} + \frac{1}{2}m_{2}v_{2_{f}}^{2}$$

$$m_{1}v_{1_{i}}^{2} + m_{2}v_{2_{i}}^{2} = m_{1}v_{1_{f}}^{2} + m_{2}v_{2_{f}}^{2}$$

$$m_{1}(v_{1_{i}}^{2} - v_{1_{f}}^{2}) = m_{2}(v_{2_{f}}^{2} - v_{2_{i}}^{2})$$

$$(3) m_{1}(v_{1_{i}} - v_{1_{f}})(v_{1_{i}} + v_{1_{f}}) = m_{2}(v_{2_{f}} - v_{2_{i}})(v_{2_{f}} + v_{2_{i}})$$

$$(1) m_{1}v_{1_{i}} + m_{2}v_{2_{i}} = m_{1}v_{1_{f}} + m_{2}v_{2_{f}}$$

$$m_{1}v_{1_{i}} - m_{1}v_{1_{f}} = m_{2}v_{2_{f}} - m_{2}v_{2_{i}}$$

$$(4) m_{1}(v_{1_{i}} - v_{1_{f}}) = m_{2}(v_{2_{f}} - v_{2_{i}})$$

$$(5) m_{1}v_{1_{f}} - m_{1}v_{1_{f}} = m_{2}v_{2_{f}} - m_{2}v_{2_{f}}$$

1D Elastic Collisions Between Objects

$$(4) \quad m_{1}(v_{1_{i}} - v_{1_{f}}) = m_{2}(v_{2_{f}} - v_{2_{i}})$$

$$(3) \quad m_{1}(v_{1_{i}} - v_{1_{f}})(v_{1_{i}} + v_{1_{f}}) = m_{2}(v_{2_{f}} - v_{2_{i}})(v_{2_{f}} + v_{2_{i}})$$

$$(5) \quad (v_{1_{i}} + v_{1_{f}}) = (v_{2_{f}} + v_{2_{i}})$$

$$(6) \quad (v_{1_{i}} - v_{2_{i}}) = -(v_{1_{f}} - v_{2_{f}})$$

The relative speed of the objects before the collision equals the negative of the relative speed after the collision.

(1)
$$m_1 v_{1_i} + m_2 v_{2_i} = m_1 v_{1_f} + m_2 v_{2_f}$$

Impulse and Momentum

8

10