Example 1:

A 0.144 kg baseball is pitched horizontally at $45 \mathrm{~m} / \mathrm{s}$. After it is hit by a bat, it is hit back towards the pitcher with a speed of $45 \mathrm{~m} / \mathrm{s}$.
a.) What is the final and initial momentum of the baseball?
b.) What impulse did the bat deliver to the ball?
c.) If the bat and ball were in contact for 0.60 ms , what was the average force the bat exerted on the ball?

Example 1: $m=0.144 \mathrm{~kg}, v_{1}=45 \frac{\mathrm{~m}}{\mathrm{~s}}$, and $v_{2}=-45 \frac{\mathrm{~m}}{\mathrm{~s}}$
a.) $p_{1}=$? and $p_{2}=$?

$$
\begin{array}{ll}
p_{1}=m v_{1}=(0.144 \mathrm{~kg})\left(45 \frac{\mathrm{~m}}{\mathrm{~s}}\right) & p_{2}=m v_{2}=(0.144 \mathrm{~kg})\left(-45 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \\
p_{1}=6.48 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}}=6.48 \mathrm{~N} \cdot \mathrm{~s} & p_{2}=-6.48 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}}=-6.48 \mathrm{~N} \cdot \mathrm{~s}
\end{array}
$$

b.) $J=$?

$$
J=\Delta p=p_{2}-p_{1}=-6.48 \mathrm{~N} \cdot \mathrm{~s}-6.48 \mathrm{~N} \cdot \mathrm{~s} \text { and } J=-12.96 \mathrm{~N} \cdot \mathrm{~s}
$$

c.) $\Delta t=0.6 \times 10^{-3} \mathrm{~s}, F=$?
$J=F \cdot \Delta t \quad$ so $F=\frac{J}{\Delta t}=\frac{-12.96 \mathrm{~N} \cdot \mathrm{~s}}{0.6 \times 10^{-3} \mathrm{~s}}$
$F=-21,600 \mathrm{~N}$

Example 2: $m=0.060 \mathrm{~kg}, v_{1}=20 \frac{\mathrm{~m}}{\mathrm{~s}}, F=-100 \mathrm{~N}$, and $\Delta t=15 \times 10^{-3} \mathrm{~s}$
a.) $p_{1}=$?
$p_{1}=m v_{1}=(0.060 \mathrm{~kg})\left(20 \frac{\mathrm{~m}}{\mathrm{~s}}\right)$
$p_{1}=1.2 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}}=1.2 \mathrm{~N} \cdot \mathrm{~s}$
b.) $J=$?
$J=F \cdot \Delta t=(-100 \mathrm{~N})\left(15 \times 10^{-3} \mathrm{~s}\right)$
$J=-1.5 \mathrm{~N} \cdot \mathrm{~s}$
c.) $v_{2}=$?

$$
\begin{aligned}
& J=\Delta p=m \Delta v=m\left(v_{2}-v_{1}\right) \\
& \quad v_{2}=\frac{J}{m}+v_{1}=\frac{-1.5 \mathrm{~N} \cdot \mathrm{~s}}{0.06 \mathrm{~kg}}+20 \frac{\mathrm{~m}}{\mathrm{~s}} \text { and } v_{2}=-5 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Example 3:

$$
m_{1}=5000 \mathrm{~kg}, v_{1 i}=10 \frac{\mathrm{~m}}{\mathrm{~s}}, m_{2}=5000 \mathrm{~kg}, \text { and } v_{2 i}=0
$$

a.) $v_{1}=v_{2}=v=$?

Using conservation of momentum:

$$
\begin{aligned}
& m_{1} v_{1}+m_{2} v_{2_{i}}=m_{1} v_{1}+m_{2} v_{2}=m_{1} v+m_{2} v \\
& m_{1} v_{1}+m_{2} v_{2_{i}}=\left(m_{1}+m_{2}\right) v \\
& v=\frac{m_{1} v_{1}+m_{2} v_{2_{i}}}{m_{1}+m_{2}}=\frac{(5000 \mathrm{~kg})\left(10 \frac{\mathrm{~m}}{\mathrm{~s}}\right)+(5000 \mathrm{~kg})(0)}{5000 \mathrm{~kg}+5000 \mathrm{~kg}}
\end{aligned}
$$

Example 3:

$$
m_{1}=5000 \mathrm{~kg}, v_{1 i}=10 \frac{\mathrm{~m}}{\mathrm{~s}}, m_{2}=5000 \mathrm{~kg}, v_{2 i}=0, \text { and } v_{1}=v_{2}=v=5 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

b.) $\Delta K E=$?
$\Delta K E=K E_{f}-K E_{i}$
$K E_{i}=\frac{1}{2} m_{1} v_{1_{i}}^{2}+\frac{1}{2} m_{2} v_{2_{i}}^{2}=\frac{1}{2}(5000 \mathrm{~kg})\left(10 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+\frac{1}{2}(5000 \mathrm{~kg})(0)^{2}=250,000 \mathrm{~J}$
$K E_{f}=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}=\frac{1}{2} m_{1} v^{2}+\frac{1}{2} m_{2} v^{2}=\frac{1}{2}\left(m_{1}+m_{2}\right) v^{2}$
$K E_{f}=\frac{1}{2}(5000 \mathrm{~kg}+5000 \mathrm{~kg})\left(5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}=125,000 \mathrm{~J}$

$$
\Delta K E=K E_{f}-K E_{i}=125,000 \mathrm{~J}-250,000 \mathrm{~J}
$$

$\Delta K E=-125,000 \mathrm{~J}$

Example 4:

$$
\begin{aligned}
& m_{1}=5000 \mathrm{~kg}, v_{1 i}=10 \frac{\mathrm{~m}}{\mathrm{~s}}, m_{2}=5000 \mathrm{~kg}, \text { and } v_{2 i}=5 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& v_{1}=v_{2}=v=?
\end{aligned}
$$

Using conservation of momentum:

$$
\begin{aligned}
& m_{1} v_{1_{i}}+m_{2} v_{2_{i}}=m_{1} v_{1}+m_{2} v_{2}=m_{1} v+m_{2} v \\
& m_{1} v_{1_{i}}+m_{2} v_{2_{i}}=\left(m_{1}+m_{2}\right) v \\
& v=\frac{m_{1} v_{1}+m_{2} v_{2_{i}}}{m_{1}+m_{2}}=\frac{(5000 \mathrm{~kg})\left(10 \frac{\mathrm{~m}}{\mathrm{~s}}\right)+(5000 \mathrm{~kg})\left(5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{5000 \mathrm{~kg}+5000 \mathrm{~kg}} \\
& v=7.5 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Example 5:

Two coupled railroad cars, one of mass $10,000 \mathrm{~kg}$ and the other of mass $15,000 \mathrm{~kg}$, are coasting along a track at a speed of $5 \mathrm{~m} / \mathrm{s}$ toward the east. An explosion causes the cars to separate with the 15,000 kg car traveling at $20 \mathrm{~m} / \mathrm{s}$ toward the east. Find the speed and direction of the $10,000 \mathrm{~kg}$ car.

Example 5:

$$
\begin{aligned}
& m_{1}=10,000 \mathrm{~kg}, m_{2}=15,000 \mathrm{~kg}, v_{1 i}=v_{2 i}=v_{i}=5 \frac{\mathrm{~m}}{\mathrm{~s}} \text {, and } v_{2}=20 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& v_{1}=?
\end{aligned}
$$

Using conservation of momentum:

$$
\begin{aligned}
& m_{1} v_{1_{i}}+m_{2} v_{2_{i}}=m_{1} v_{1}+m_{2} v_{2} \\
& m_{1} v_{i}+m_{2} v_{i}=\left(m_{1}+m_{2}\right) v_{i}=m_{1} v_{1}+m_{2} v_{2}
\end{aligned}
$$

$$
v_{1}=\frac{\left(m_{1}+m_{2}\right) v_{i}-m_{2} v_{2}}{m_{1}}=\frac{(10,000 \mathrm{~kg}+15,000 \mathrm{~kg})\left(5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)-(15,000 \mathrm{~kg})\left(20 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{10,000 \mathrm{~kg}}
$$

$$
\begin{gathered}
v_{1}=-17.5 \frac{\mathrm{~m}}{\mathrm{~s}} \\
v_{1}=17.5 \frac{\mathrm{~m}}{\mathrm{~s}}, \text { west }
\end{gathered}
$$

Example 6:

Example 6:

Two balls are approaching each other as shown in the figure above. What are the final velocities of each ball if the collision is perfectly elastic?

Example 6:

$\left(1+6^{*}\right) 2 m_{1} v_{1_{i}}+m_{2} v_{2_{i}}-m_{1} v_{2_{i}}=m_{2} v_{2}+m_{1} v_{2}$
$\left(1+6^{*}\right) 2 m_{1} v_{1_{i}}+\left(m_{2}-m_{1}\right) v_{2_{i}}=\left(m_{2}+m_{1}\right) v_{2}$ $\left(1+6^{*}\right) v_{2}=\frac{2 m_{1} v_{1_{i}}+\left(m_{2}-m_{1}\right) v_{2_{i}}}{\left(m_{2}+m_{1}\right)}$
$v_{2}=\frac{2(6.0 \mathrm{~kg})\left(1.0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)+(3.0 \mathrm{~kg}-6.0 \mathrm{~kg})\left(-5.0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{(3.0 \mathrm{~kg}+6.0 \mathrm{~kg})}=3 \frac{\mathrm{~m}}{\mathrm{~s}}$

Example 6:

(6) $\left(v_{1_{i}}-v_{2_{i}}\right)=-\left(v_{1}-v_{2}\right)$

$$
\begin{gathered}
v_{1}=v_{2}-v_{1_{i}}+v_{2_{i}} \\
v_{1}=3.0 \frac{\mathrm{~m}}{\mathrm{~s}}-1.0 \frac{\mathrm{~m}}{\mathrm{~s}}+\left(-5.0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)
\end{gathered}
$$

$$
v_{1}=-3.0 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

