Oscillations

Oscillations

Simple Harmonic Motion

Simple Harmonic Motion (SHM) is periodic motion in which the restoring force is directly proportional to the displacement from the equilibrium position.

$$
F_{x}=-k x
$$

Simple Harmonic Motion is an oscillation that is described by a sinusoidal function.

$$
x=A \cos (2 \pi f t)=A \cos (\omega t)
$$

Potential Energy in SHM

Energy in Simple Harmonic Motion

The total energy is the sum of the kinetic and potential energies of the object.

$$
\begin{gathered}
E=K+U=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2} \\
E=\frac{1}{2} m(-\omega A \sin (\omega t))^{2}+\frac{1}{2} k(A \cos (\omega t))^{2} \\
E=\frac{1}{2} k A^{2} \sin ^{2}(\omega t)+\frac{1}{2} k A^{2} \cos ^{2}(\omega t) \\
E=\frac{1}{2} k A^{2}\left(\sin ^{2}(\omega t)+\cos ^{2}(\omega t)\right) \\
E=\frac{1}{2} k A^{2} \\
\text { Oscillations }
\end{gathered}
$$

Energy in Periodic Motion

Oscillations

Period of Oscillation

Since $v=-\omega A \sin (\omega t)=-v_{\max } \sin (\omega t)$ it follows that :

$$
v_{\text {max }}=\omega A=\sqrt{\frac{k}{m}} A \text { and } \omega=\sqrt{\frac{k}{m}}
$$

The period T is therefore:

$$
\begin{gathered}
T=\frac{2 \pi}{\omega}=\frac{2 \pi}{\sqrt{\frac{k}{m}}} \\
T_{s}=2 \pi \sqrt{\frac{m}{k}} \\
\text { Oscillations }
\end{gathered}
$$

Horizontal Motion of a Mass on a Spring

The restoring force for an ideal spring is:

$$
F_{s}=-k x
$$

An attached mass m will undergo SHM when displaced from equilibrium on a frictionless surface.

Vertical Spring Oscillation Situation 1:

$$
\begin{gathered}
K_{1}+U_{e_{1}}+U_{g_{1}}=K_{2}+U_{e_{2}}+U_{g_{2}} \\
U_{e_{1}}=U_{e_{2}}+U_{g_{2}} \\
\frac{1}{2} k\left(y+\Delta y_{1}\right)^{2}=\frac{1}{2} k\left(y-\Delta y_{2}\right)^{2}+m g\left(\Delta y_{1}+\Delta y_{2}\right)
\end{gathered}
$$

Vertical Spring Oscillation Situation 1:

$$
\begin{gathered}
y^{2}+2 y \Delta y_{1}+\Delta y_{1}^{2}=y^{2}-2 y \Delta y_{2}+\Delta y_{2}^{2}+\frac{2 m g}{k}\left(\Delta y_{1}+\Delta y_{2}\right) \\
2 y \Delta y_{1}+\Delta y_{1}^{2}=-2 y \Delta y_{2}+\Delta y_{2}^{2}+\frac{2 m g}{k} \Delta y_{1}+\frac{2 m g}{k} \Delta y_{2} \\
2 \frac{m g}{k} \Delta y_{1}+\Delta y_{1}^{2}=-2 \frac{m g}{k} \Delta y_{2}+\Delta y_{2}^{2}+\frac{2 m g}{k} \Delta y_{1}+\frac{2 m g}{k} \Delta y_{2} \\
\Delta y_{1}^{2}=\Delta y_{2}^{2} \\
\Delta y_{1}=\Delta y_{2} \quad \text { and } \quad A=\Delta y_{1}
\end{gathered}
$$

The motion has an amplitude $A=\Delta y_{1}$ with an equilibrium point located at $y=\frac{m g}{k}$.

Vertical Spring Amplitude Situation 2:

$$
\begin{gathered}
m g \Delta y_{1}=\frac{1}{2} k \Delta y_{1}^{2} \\
\frac{2 m g}{k}=\Delta y_{1} \\
\Delta y_{1}=2 A \\
A=\frac{m g}{k}
\end{gathered}
$$

The motion has an amplitude $A=\frac{m g}{k}$ with an equilibrium point also located at $y=\frac{m g}{k}$.

The Simple Pendulum

A simple pendulum is an idealized model consisting of a point mass suspended by a massless, unstretchable string.

Vertical Spring Oscillation Situation 2:

14

Motion of a Mass on a Vertical Spring

A mass \boldsymbol{m} on a vertical spring oscillates with simple harmonic motion with its equilibrium position determined by the force of gravity on the mass. At equilibrium:

$$
\begin{gathered}
F_{g}=m g=k y_{0} \\
y_{0}=\frac{m g}{k}
\end{gathered}
$$

The Simple Pendulum

$$
\begin{gathered}
F=-\frac{m g}{L} x=-k x \\
\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{m g / L}{m}}=\sqrt{\frac{g}{L}}
\end{gathered}
$$

The period T of a simple pendulum for small amplitudes is:

$$
T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{L}{g}} \quad T_{p}=2 \pi \sqrt{\frac{\ell}{g}}
$$

