Sound Facts

Sound is a *longitudinal mechanical wave* and can travel through solids, liquids, and gases.

Sound is produced by the *compression* and *rarefaction* of matter resulting in oscillations in the pressure of the medium.

The speed of sound in air at 20°C is 343 m/s, and varies with temperature.

2

4

6

Still Sound

Sound

1

3

5

Sound

Sound can be classified by frequency:

infrasonic	f < 20 Hz
audible	20 Hz to 20,000 Hz
ultrasonic	> 20,000 Hz up to 600 MHz

The *frequency* of a sound wave is also called *pitch*.

Sound

Sound Level

Loudness - depends upon the amplitude of the pressure variation. The human ear is sensitive to pressure variations as low as $2 \ge 10^{-5}$ Pa to those which cause pain (20 Pa).

Because of this wide range, sound pressures are typically measured by a quantity called *sound level* which is measured in *decibels* (dB).

Sound

Sound Level

sound level:
$$\beta = 10 \log \left(\frac{I}{I_o}\right)$$
 (dB)

I - the sound intensity. It is the rate that sound energy flows through a unit area normal to the direction of propagation $(W/m^2).$

 I_o -is the threshold of hearing $(I_o = 10^{-12} \text{ W/m}^2)$.

Sound Levels

Type of Sound	Sound Level (dB)
threshold of hearing	0
whisper	10 - 20
soft music	30
conversation	60 - 70
heavy street traffic	70 - 80
thunder	110
threshold of pain	120
jet engine	170

Sound

Sources of Sound

Sound is produced by vibrating objects. There are three types of vibrating objects:

1.) Membranes (drums, vocal cords, loud speakers)

2.) Air columns (trumpets, flutes, pipe organs)

3.) Strings (guitar, piano, harp, banjo)

Sound

Closed and Open End Pipes

The end of a pipe can either be closed or open and this affects the boundary condition on the sound wave produced.

A closed end of pipe is a displacement node (analogous to fixed end of string) and a pressure antinode.

An *open end* of pipe is a *displacement antinode* and a *pressure node* (open to atmosphere).

Sound

Closed Pipe Resonators

A *closed pipe resonator* has one open end and one closed end (like blowing on a bottle).

Modes for Closed Pipe Resonators

Modes for Closed Pipe Resonators

Modes for Closed Pipe Resonators

Mode	Wavelength
1	4L
3	$\frac{4}{3}L$
5	$\frac{4}{5}L$
7	$rac{4}{7}L$
•	•
•	•
n	$\lambda_n = \frac{4L}{n} (n = 1, 3, 5, \dots$

Sound

12

Modes for Closed Pipe Resonators

Mode	Frequency			
1	$\frac{v}{4L} = f_1$			
3	$\frac{3v}{4L} = 3f_1$			
5	$\frac{5v}{4L} = 5f_1$			
7	$\frac{7v}{4L} = 7f_1$			
•	•			
•	•			
n	$\frac{n v}{4L} = n f_1$ (n = 1, 3, 5,)			
(only odd harmonics are formed)				
	Sound 13			

n = 1

n = 3

n = 5

n = 7

14

18

Open Pipe Resonators

An open pipe resonators has both ends open.

Modes for Open Pipe Resonators

Modes for Open Pipe Resonators

Modes for Open Pipe Resonators

Mode	Frequency			
1	$\frac{v}{2L} = f_1$			
2	$\frac{v}{L} = 2f_1$			
3	$\frac{3v}{2L} = 3f_1$			
4	$\frac{2v}{L} = 4f_1$			
•	•			
•	•			
n	$\frac{n v}{2L} = nf_1 (n = 1, 2,$	3,)		
(all harmonics are formed)				
Sound		19		

Open Pipe Resonators

Air Resonators (Summary)

Closed Pipe Resonators

Displacement node and antinode on ends

For a pipe of length *L*:

wavelengths are $\lambda_n = \frac{4L}{n}$ (n = 1, 3, 5, ...)frequencies are $f_1, 3f_1, 5f_1, ...$ Mode *n* has $\frac{n+1}{2}$ nodes and antinodes Sound 21

Air Resonators (Summary)

Open Pipe Resonators

n = 1

n = 2

n = 3

n = 4

Displacement antinodes on both ends

For a pipe of length *L*:

wavelengths are $\lambda_n = \frac{2L}{n} (n = 1, 2, 3, ...)$ frequencies are $f_1, 2f_1, 3f_1, ...$

Mode n has n nodes and n + 1 antinodes

Sound 22

Beats

Beats are the result of the interference (algebraic sum) of two waves of slightly different frequencies.

The beat frequency is the difference in the wave frequencies.

$$f_b = |f_1 - f_2|$$

Sound

23

Beats

Doppler Effect

If there is relative motion between the source and the detector, then the waves that the detector receives are different in frequency.

A *doppler shift* occurs if either the detector or source is moving or both the detector and source are moving.

If the relative motion is such that the source and detector are moving towards one another then a higher frequency is detected.

If the relative motion is such that the source and detector are moving away from one another then a lower frequency is detected.

Sound

27

Doppler Effect

 $f_d = \frac{\left(v + v_d\right)}{\left(v - v_s\right)} \cdot f_s$

The apparent frequency sensed by the detector is:

where

 f_s = frequency emitted by source (Hz)

 f_d = frequency sensed by detector (Hz)

 v_s = velocity of source (m/s)

 v_d = velocity of detector (m/s)

v = velocity of sound (m/s)

(v_s and v_d are positive when moving toward one another.) Sound

28