Example 1:
A closed pipe resonator has a length of 0.60 m .
a.) Find the fundamental frequency.
b.) What is the wavelength of the seventh harmonic?
c.) How many antinodes are in the third harmonic?
d.) How many nodes are in the fifth harmonic?
e.) Repeat a-d for an open-pipe resonator.
Sound

Example 1e:

$$
\text { open pipe } L=0.60 \mathrm{~m}, v=340 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

a.) $f_{1}=$?
$v=\lambda_{1} f_{1}$ and $\lambda_{n}=\frac{2 L}{n}$
$f_{1}=\frac{v}{\lambda_{1}}=\frac{v}{\left(\frac{2 L}{1}\right)}=\frac{v}{2 L}=\frac{\left(340 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{2(0.60 \mathrm{~m})}$
$f_{1}=283 \mathrm{~Hz}$
b.) $n=7, \lambda_{n}=$?
c.) antinodes in third harmonic $=$?
4 antinodes
d.) nodes in fifth harmonic $=$?

$\lambda_{7}=\frac{2 L}{7}=\frac{2(0.60 \mathrm{~m})}{7}$
$\lambda_{7}=0.171 \mathrm{~m}$

Example 2:

 closed pipe, $f_{5}=1500 \mathrm{~Hz}, v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$a.) $L=$?

$$
v=\lambda_{5} f_{5} \text { and } \lambda_{n}=\frac{4 L}{n}
$$

$$
\lambda_{5}=\frac{v}{f_{5}}=\frac{4 L}{5} \text { so } L=\frac{5 v}{4 f_{5}}=\frac{5\left(340 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{4(1500 \mathrm{~Hz})}
$$

$$
L=0.283 \mathrm{~m}
$$

$$
\begin{aligned}
\text { b.) } f_{1}, f_{3}, f_{5} & =? \\
f_{n} & =n f_{1}
\end{aligned}
$$

$$
f_{5}=5 f_{1} \quad \text { so } f_{1}=\frac{f_{5}}{5}=\frac{1500 \mathrm{~Hz}}{5} \quad f_{3}=3 f_{1}=3(300 \mathrm{~Hz})
$$

$$
\begin{array}{lll}
f_{1}=300 \mathrm{~Hz} & f_{3}=900 \mathrm{~Hz} & f_{5}=1500 \mathrm{~Hz} \\
5
\end{array}
$$

Example 1:
a.) $f_{1}=$?
$v=\lambda_{1} f_{1}$ and $\lambda_{n}=\frac{4 L}{n}$
$f_{1}=\frac{v}{\lambda_{1}}=\frac{v}{\left(\frac{4 L}{1}\right)}=\frac{v}{4 L}=\frac{\left(340 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{4(0.60 \mathrm{~m})}$
$f_{1}=142 \mathrm{~Hz}$
b.) $n=7, \lambda_{n}=$?

$$
\lambda_{7}=\frac{4 L}{7}=\frac{4(0.60 \mathrm{~m})}{7}
$$

$\lambda_{7}=0.343 \mathrm{~m}$

Example 2:
The frequency of the fifth harmonic of a closed-pipe is 1500 Hz .
a.) Find the length of the pipe.
b.) Find the first 3 resonant frequencies.
c.) What is the longest wavelength that resonates?
d.) Repeat a-c for an open-pipe resonator.

Example 2d:
open pipe, $f_{5}=1500 \mathrm{~Hz}, v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$
a.) $L=$?
$v=\lambda_{5} f_{5}$ and $\lambda_{n}=\frac{2 L}{n}$
c.) $\lambda_{1}=$? $\lambda_{1}=\frac{2 L}{1}=\frac{2(0.567 \mathrm{~m})}{1}$
$\lambda_{5}=\frac{v}{f_{5}}=\frac{2 L}{5}$ so $L=\frac{5 v}{2 f_{5}}=\frac{5\left(340 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{2(1500 \mathrm{~Hz})}$

$$
L=0.567 \mathrm{~m}
$$

b.) $f_{1}, f_{2}, f_{3}=$?
$f_{n}=n f_{1}$
$f_{5}=5 f_{1} \quad$ so $f_{1}=\frac{f_{5}}{5}=\frac{1500 \mathrm{~Hz}}{5} \quad f_{2}=2 f_{1}=2(300 \mathrm{~Hz}) \quad f_{3}=3 f_{1}=3(300 \mathrm{~Hz})$
$f_{1}=300 \mathrm{~Hz}$

$$
f_{2}=600 \mathrm{~Hz}
$$

$$
f_{3}=900 \mathrm{~Hz}
$$

Example 3:
A tuning fork has a frequency of 512 Hz .
a.) What are the three shortest lengths that will resonate this frequency if both ends of the pipe are open?
b.) What are the three shortest lengths that will resonate this frequency if one of the ends of the pipe is closed?

Example 3: \quad closed pipe, $f=512 \mathrm{~Hz}, v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$

$$
\begin{aligned}
& \text { b.) } L_{1}, L_{2} \text {, and } L_{3},=\text { ? } \\
& \lambda=\frac{v}{f}=\frac{\left(340 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{(512 \mathrm{~Hz})}=0.664 \mathrm{~m} \\
& \lambda_{n}=\frac{4 L}{n}(n=1,3,5, \ldots) \\
& \text { for a fixed wavelength } \lambda=\frac{4 L_{n}}{n}
\end{aligned}
$$

For a fixed wavelength, the lengths that will resonate a given wavelength are:

$$
L_{n}=\frac{n \lambda}{4}
$$

$$
\begin{array}{ccc}
L_{1}=\frac{\lambda}{4}=\frac{0.664 \mathrm{~m}}{4} & L_{2}=\frac{3 \lambda}{4}=\frac{3(0.664 \mathrm{~m})}{4} & L_{3}=\frac{5 \lambda}{4}=\frac{5(0.664 \mathrm{~m})}{4} \\
L_{1}=0.166 \mathrm{~m} & L_{2}=0.498 \mathrm{~m} & L_{3}=0.830 \mathrm{~m}
\end{array}
$$

Example 5:
Rat is being pursued by the police while traveling on MoPac. Rat's speed is $30 \mathrm{~m} / \mathrm{s}$ and the cop's speed is $50 \mathrm{~m} / \mathrm{s}$. The frequency of the police siren (at rest) is 500 Hz .
a.) What is the frequency of the siren heard by the policeman?
b.) What is the frequency of the siren heard by Rat?
c.) Suppose Larry is traveling in the opposite direction at a speed of $40 \mathrm{~m} / \mathrm{s}$ towards the policeman. What frequency does Larry hear?

$$
\begin{aligned}
& \text { Example 3: } \begin{array}{l}
\text { open pipe, } f=512 \mathrm{~Hz}, v=340 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\text { a.) } L_{1}, L_{2} \text {, and } L_{3},=\text { ? } \\
\lambda=\frac{v}{f}=\frac{\left(340 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{(512 \mathrm{~Hz})}=0.664 \mathrm{~m} \\
\lambda_{n}=\frac{2 L}{n} \\
\text { for a fixed wavelength } \lambda=\frac{2 L_{n}}{n}
\end{array}
\end{aligned}
$$

For a fixed wavelength, the lengths that will resonate a given wavelength are:

$$
\begin{array}{ccc}
L_{n}=\frac{n \lambda}{2} \\
L_{1}=\frac{\lambda}{2}=\frac{0.664 \mathrm{~m}}{2} & L_{2}=\frac{2 \lambda}{2}=\frac{3(0.664 \mathrm{~m})}{4} & L_{3}=\frac{3 \lambda}{2}=\frac{3(0.664 \mathrm{~m})}{2} \\
L_{1}=0.332 \mathrm{~m} & L_{2}=0.664 \mathrm{~m} & L_{3}=0.996 \mathrm{~m}
\end{array}
$$

Example 4:

A beat frequency of 4 Hz is detected when two tones are played together. If the frequency of one of the tones is 520 Hz , what are the possible frequencies for the second tone?

$$
\begin{gathered}
f_{b}=\left|f_{1}-f_{2}\right|=4 \mathrm{~Hz} \\
f_{1}=520 \mathrm{~Hz} \\
f_{2}=516 \mathrm{~Hz} \text { or } 524 \mathrm{~Hz}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Example 5: } f_{s}=500 \mathrm{~Hz}, v_{d}=-30 \frac{\mathrm{~m}}{\mathrm{~s}}, v_{s}=50 \frac{\mathrm{~m}}{\mathrm{~s}}, v=340 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { a.) } f_{d}=\text { ? for the policeman } \\
& \text { policeman hears wave at } f_{d}=500 \mathrm{~Hz} \\
& \text { b.) } f_{d}=\text { ? for Rat } \\
& f_{d}=\frac{\left(v+v_{d}\right)}{\left(v-v_{s}\right)} f_{s}=\frac{\left(340 \frac{\mathrm{~m}}{\mathrm{~s}}-30 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{\left(340 \frac{\mathrm{~m}}{\mathrm{~s}}-50 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}(500 \mathrm{~Hz}) \\
& f_{d}=534 \mathrm{~Hz} \\
& \text { c.) } f_{d}=? \text { for Larry }\left(v_{d}=40 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \\
& f_{d}=\frac{\left(v+v_{d}\right)}{\left(v-v_{s}\right)} f_{s}=\frac{\left(340 \frac{\mathrm{~m}}{\mathrm{~s}}+40 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{\left(340 \frac{\mathrm{~m}}{\mathrm{~s}}-50 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}(500 \mathrm{~Hz}) \\
& f_{d}=655 \mathrm{~Hz}
\end{aligned}
$$

