Vectors

Vectors

Vector Components

The components of a vector can be found from the vector's magnitude and direction using trigonometry.

$$
\begin{aligned}
x-\operatorname{component} & =A_{x}=A \cos \theta \\
y-\operatorname{component} & =A_{y}=A \sin \theta
\end{aligned}
$$

Vectors

Vector Addition (Graphically)

1.) Vectors can be added graphically by placing the tail of one vector at the head of another vector.
2.) A third vector is then drawn connecting the tail of the first vector to the head of the second vector.
3.) This third vector represents the sum of the two vectors and is called the resultant of the two vectors.

A vector quantity has both a magnitude (length) and a direction (angle).

- A vector can be graphically represented by using an arrow whose length is proportional to the vector's magnitude.
- It is conventional to represent a vector's direction by the angle it forms with the positive x-axis. This angle is measured counterclockwise.

Vector Components

The magnitude and direction of a vector can also be determined from its components.

$$
\begin{aligned}
A & =\sqrt{A_{x}^{2}+A_{y}^{2}} \\
\theta & =\tan ^{-1} \frac{A_{y}}{A_{x}}
\end{aligned}
$$

Vectors

Vector Addition (Graphically)

$\stackrel{\rightharpoonup}{C}$

Vector Addition (Addition of Components)

Vectors can be added by adding their x components to get the x component of the resultant and then adding their y components to get the y component of the resultant.

Applications

1.) Crossing rivers.

2.) Flying with wind.

Crossing a River

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{v}_{w}=\text { water velocity } \\
& \vec{v}_{C}=\text { course velocity } \\
& \vec{v}_{A}=\text { actual velocity }
\end{aligned}
$$

8

Vectors

Flying in the Wind

$$
\vec{v}_{w}=\text { wind velocity }
$$

$$
\bar{v}_{C}=\text { course velocity }
$$

$$
\vec{v}_{A}=\text { actual velocity }
$$

