Example 1:

$$
f=350 \mathrm{~Hz}, v_{1}=340 \frac{\mathrm{~m}}{\mathrm{~s}}, v_{2}=1200 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Example 1:

A sound wave has a frequency of 350 Hz and has a velocity of $340 \mathrm{~m} / \mathrm{s}$ in air. The wave passes through a wall in which its speed increases to $1200 \mathrm{~m} / \mathrm{s}$.
a.) What is the wavelength of the wave as it propagates through the air?
b.) What is the wavelength of the wave as it propagates through the wall?

Example 2:
Rat is on a raft in the ocean and notices that the raft bobs up and down and makes 8 oscillations every 20 seconds. She also notices that the distance between the crests of the waves is 2.0 m . Find the frequency, wavelength, period, and speed of the waves.

Example 3:

The figure below shows a snapshot of two pulses at time $t=0 \mathrm{~s}$ approaching each other at $1 \mathrm{~m} / \mathrm{s}$. Draw a snapshot of the pulses at $t=1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}$, and 5 s .

Example 2

8 oscillations every 20 seconds, crest to crest distance of 2.00 meters

$$
\begin{array}{cc}
f=? & f=\frac{8 \text { oscillations }}{20 \mathrm{~s}} \\
& f=0.400 \mathrm{~Hz} \\
\lambda=? & \lambda=2.00 \mathrm{~m} \\
T=? & T=\frac{1}{f}=\frac{1}{(0.400 \mathrm{~Hz})} \\
& T=2.50 \mathrm{~s} \\
v=? & v=\lambda f=(2.00 \mathrm{~m})(0.400 \mathrm{~Hz}) \\
& v=0.800 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{array}
$$

Example 4:
The figure below shows a snapshot of two pulses at time $t=0 \mathrm{~s}$ approaching each other at $1 \mathrm{~m} / \mathrm{s}$. Draw a snapshot of the pulses at $t=1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}$, and 5 s .

Example 5:
The figures below show a snapshot of a traveling wave at time $t=0 \mathrm{~s}$ and 5 s .

a.) What is the wavelength and period of this wave?

$$
\lambda=10 \mathrm{~cm} \quad t=\frac{T}{2} \text { so } T=2 t=2(5 \mathrm{~s}) \quad T=10 \mathrm{~s}
$$

b.) What is speed of this wave? $v=\frac{\lambda}{T}=\frac{(10 \mathrm{~cm})}{(10 \mathrm{~s})} \quad v=1.0 \frac{\mathrm{~cm}}{\mathrm{~s}}$

Example 6:
A 220 cm length of string is stretched between two supports. What are four longest possible wavelengths for traveling waves on the string that can produce standing waves?

$$
\begin{array}{cc}
L=2.20 \mathrm{~m}, \lambda_{1}=?, \lambda_{2}=?, \lambda_{3}=?, \lambda_{4}=?, \\
& \lambda_{n}=\frac{2 L}{n} \\
\lambda_{1}=\frac{2 L}{1}=\frac{2(2.20 \mathrm{~m})}{1} & \lambda_{3}=\frac{2 L}{3}=\frac{2(2.20 \mathrm{~m})}{3} \\
\lambda_{1}=4.40 \mathrm{~m} & \lambda_{3}=1.47 \mathrm{~m} \\
\lambda_{2}=\frac{2 L}{2}=\frac{2(2.20 \mathrm{~m})}{2} & \lambda_{4}=\frac{2 L}{4}=\frac{2(2.20 \mathrm{~m})}{4} \\
\lambda_{2}=2.20 \mathrm{~m} & \text { Waves } \\
\lambda_{4}=1.10 \mathrm{~m}
\end{array}
$$

Example 7:

What is the speed of a transverse wave in a 40.0 g string that is 80.0 cm long under a tension of 300 N ?

$$
\begin{gathered}
m=0.0400 \mathrm{~kg}, L=0.800 \mathrm{~m}, T=300 \mathrm{~N}, v=? \\
v=\sqrt{\frac{T}{\mu}}=\sqrt{\frac{T}{\left(\frac{m}{L}\right)}}=\sqrt{\frac{T L}{m}} \\
v=\sqrt{\frac{(300 \mathrm{~N})(0.800 \mathrm{~m})}{(0.0400 \mathrm{~kg})}} \\
v=77.5 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Example 8:

$$
\mu=0.350 \frac{\mathrm{~kg}}{\mathrm{~m}}, T=185 \mathrm{~N}, f=350 \mathrm{~Hz}, 5 \text { loops }
$$

a.) $L=$?

$$
\begin{aligned}
& \lambda_{n}=\frac{2 L}{n} \text { and } \lambda_{n}=\frac{v}{f_{n}} \text { and } v=\sqrt{\frac{T}{\mu}} \\
& \\
& L=\frac{n \lambda_{n}}{2}=\frac{n v}{2 f_{n}}=\frac{n \sqrt{\frac{T}{\mu}}}{2 f_{n}} \quad(5 \text { loops } \Rightarrow n=5) \quad L=\frac{\sqrt{\left(0.350 \frac{\mathrm{~kg}}{\mathrm{~m}}\right)}}{2(350 \mathrm{~Hz})}
\end{aligned}
$$

$L=0.164 \mathrm{~m}$
b.) sketch wave

Example 9:

A string fixed at both ends is 0.640 m long and is oscillating such that there are 7 nodes present along the string (including the end points). The tension and linear density are such that the wave velocity is $48.0 \mathrm{~m} / \mathrm{s}$.
a.) What is the wavelength of the standing wave pattern?
b.) What is the fundamental frequency of the string assuming the same tension and wave velocity?

Example 10:
A 1.40 m string, clamped at both ends, vibrates at a frequency of 280 Hz forming a standing wave pattern with 7 antinodes.
a.) If the string has a mass of 25.0 g , what is the tension in the string?
b.) What frequency will cause the string to vibrate with 4 loops?

Example 9:

$$
L=0.640 \mathrm{~m}, v=48.0 \frac{\mathrm{~m}}{\mathrm{~s}}, 7 \text { nodes }
$$

a.) $\lambda_{n}=? \quad(7$ nodes $\Rightarrow n=6)$

$$
\begin{gathered}
\lambda_{n}=\frac{2 L}{n} \text { so } \lambda_{6}=\frac{2 L}{6}=\frac{2(0.640 \mathrm{~m})}{6} \\
\lambda_{6}=0.213 \mathrm{~m}
\end{gathered}
$$

b.) $f_{1}=$?

$$
\begin{aligned}
& f_{1}=? \\
& \lambda_{n}=\frac{v}{f_{n}} \text { so } f_{n}=\frac{v}{\lambda_{n}}=\frac{n v}{2 L} \text { and } f_{1}=\frac{(1) v}{2 L}=\frac{(1)\left(48.0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{2(0.640 \mathrm{~m})}
\end{aligned}
$$

$$
\text { also } f_{6}=\frac{v}{\lambda_{6}}=\frac{\left(48.0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{(0.213 \mathrm{~m})} \text { and } f_{6}=225 \mathrm{~Hz}
$$

$$
f_{n}=n f_{1} \operatorname{so} f_{6}=6 f_{1} \text { and } f_{1}=\frac{f_{6}}{6}=\frac{225 \mathrm{~Hz}}{6} \quad f_{1}=37.5 \mathrm{~Hz}
$$

14

Example 10:

$$
L=1.40 \mathrm{~m}, f_{n}=280 \mathrm{~Hz}, 7 \text { antinodes }
$$

a.) $m=0.0250 \mathrm{~kg}, T=? \quad(7$ antinodes $\Rightarrow n=7)$

$$
\begin{gathered}
v=\sqrt{\frac{T}{\mu}}=\sqrt{\frac{T L}{m}} \text { and } \lambda_{n}=\frac{2 L}{n} \text { and } \lambda_{n}=\frac{v}{f_{n}} \text { so } v=\lambda_{n} f_{n} \text { and } v=\frac{2 L}{n} f_{n} \\
T=\frac{m v^{2}}{L}=\frac{m\left(\frac{2 L}{n} f_{n}\right)^{2}}{L}=\frac{4 m L f_{n}^{2}}{n^{2}}=\frac{4(0.0250 \mathrm{~kg})(1.40 \mathrm{~m})(280 \mathrm{~Hz})^{2}}{7^{2}} \\
T=224 \mathrm{~N}
\end{gathered}
$$

b.) $(4$ loops $\Rightarrow n=4) f_{4}=$?

$$
\begin{gathered}
f_{n}=n f_{1} \text { so } f_{7}=7 f_{1} \text { and } f_{1}=\frac{f_{7}}{7}=\frac{280 \mathrm{~Hz}}{7}=40 \mathrm{~Hz} \\
f_{4}=4 f_{1}=4(40 \mathrm{~Hz}) \\
f_{4}=160 \mathrm{~Hz}
\end{gathered}
$$

