Example 1:

A sound wave has a frequency of 350 Hz and has a velocity of 340 m/s in air. The wave passes through a wall in which its speed increases to 1200 m/s.

- a.) What is the wavelength of the wave as it propagates through the air?
- b.) What is the wavelength of the wave as it propagates through the wall?

Waves

Example 2:

1

3

5

8 oscillations every 20 seconds, crest to crest distance of 2.00 meters

2

4

6

f = ?	$f = \frac{8 \text{ oscillations}}{20 \text{ s}}$
	f = 0.400 Hz
λ= ?	$\lambda = 2.00 \text{ m}$
<i>T</i> = ?	$T = \frac{1}{f} = \frac{1}{(0.400 \text{ Hz})}$
	T = 2.50 s
v = ?	$v = \lambda f = (2.00 \text{ m})(0.400 \text{ Hz})$
	$v = 0.800 \frac{\text{m}}{\text{s}}$

Example 2:

Rat is on a raft in the ocean and notices that the raft bobs up and down and makes 8 oscillations every 20 seconds. She also notices that the distance between the crests of the waves is 2.0 m. Find the frequency, wavelength, period, and speed of the waves.

Waves

Example 3:

The figure below shows a snapshot of two pulses at time t = 0 s approaching each other at 1 m/s. Draw a snapshot of the pulses at t = 1 s, 2 s, 3 s, 4 s, and 5 s.

Example 4:

The figure below shows a snapshot of two pulses at time t = 0 s approaching each other at 1 m/s. Draw a snapshot of the pulses at t = 1 s, 2 s, 3 s, 4 s, and 5 s.

Example 5:

The figures below show a snapshot of a traveling wave at time t = 0 s and 5 s.

Example 6:

A 220 cm length of string is stretched between two supports. What are four longest possible wavelengths for traveling waves on the string that can produce standing waves?

Example 7:

What is the speed of a transverse wave in a 40.0 g string that is 80.0 cm long under a tension of 300 N?

m = 0.0400 kg, L = 0.800 m, T = 300 N, v = ?

Example 8:

A wire has a linear density of 0.35 kg/m and is fixed at both ends such that the tension in the wire is 185 N. When the wire is excited using the vibration from a 350 Hz tuning fork, a standing wave pattern is formed containing 5 loops.

Waves

a.) What is the length of the wire?

b.) Sketch the standing wave pattern.

 $\lambda_n = \frac{2L}{n} \text{ and } \lambda_n = \frac{v}{f_n} \text{ and } v = \sqrt{\frac{T}{\mu}}$ $L = \frac{n\lambda_n}{2} = \frac{nv}{2f_n} = \frac{n\sqrt{\frac{T}{\mu}}}{2f_n} \quad (5 \text{ loops } \Rightarrow n = 5) \quad L = \frac{5\sqrt{\frac{(185 \text{ N})}{(0.350 \frac{\text{kg}}{\text{m}})}}}{2(350 \text{ Hz})}$ b.) sketch wave L = 0.164 m

Example 8:

a.) L = ?

Waves

 $\mu = 0.350 \frac{\text{kg}}{\text{m}}, T = 185 \text{ N}, f = 350 \text{ Hz}, 5 \text{ loops}$

10

12

11

9

Example 9:

A string fixed at both ends is 0.640 m long and is oscillating such that there are 7 nodes present along the string (including the end points). The tension and linear density are such that the wave velocity is 48.0 m/s.

- a.) What is the wavelength of the standing wave pattern?
- b.) What is the fundamental frequency of the string assuming the same tension and wave velocity?

Waves 13

pie 9:

$$L = 0.640 \text{ m}, v = 48.0 \frac{\text{m}}{\text{s}}, 7 \text{ nodes}$$
a.) $\lambda_n = ?$ (7 nodes $\Rightarrow n = 6$)
 $\lambda_n = \frac{2L}{n} \text{ so } \lambda_6 = \frac{2L}{6} = \frac{2(0.640 \text{ m})}{6}$
 $\overline{\lambda_6} = 0.213 \text{ m}$
b.) $f_1 = ?$
 $\lambda_n = \frac{v}{f_n} \text{ so } f_n = \frac{v}{\lambda_n} = \frac{nv}{2L} \text{ and } f_1 = \frac{(1)v}{2L} = \frac{(1)(48.0 \frac{\text{m}}{\text{s}})}{2(0.640 \text{ m})}$
 $also f_6 = \frac{v}{\lambda_6} = \frac{(48.0 \frac{\text{m}}{\text{s}})}{(0.213 \text{ m})} \text{ and } f_6 = 225 \text{ Hz}$
 $f_n = nf_1 \text{ so } f_6 = 6f_1 \text{ and } f_1 = \frac{f_6}{6} = \frac{225 \text{ Hz}}{6}$
 $f_1 = 37.5 \text{ Hz}$

Example 10:

$$L = 1.40 \text{ m}, f_n = 280 \text{ Hz}, 7 \text{ antinodes}$$

A 1.40 m string, clamped at both ends, vibrates at a frequency of 280 Hz forming a standing wave pattern with 7 antinodes.

- a.) If the string has a mass of 25.0 g, what is the tension in the string?
- b.) What frequency will cause the string to vibrate with 4 loops?

Waves

15

a.) m = 0.0250kg, T = ? (7 antinodes $\Rightarrow n = 7$)

$$v = \sqrt{\frac{T}{\mu}} = \sqrt{\frac{TL}{m}} \quad \text{and } \lambda_n = \frac{2L}{n} \quad \text{and } \lambda_n = \frac{v}{f_n} \text{ so } v = \lambda_n f_n \text{ and } v = \frac{2L}{n} f_n$$
$$T = \frac{mv^2}{L} = \frac{m\left(\frac{2L}{n}f_n\right)^2}{L} = \frac{4mLf_n^2}{n^2} = \frac{4(0.0250 \text{ kg})(1.40 \text{ m})(280 \text{ Hz})^2}{7^2}$$
$$\boxed{T = 224 \text{ N}}$$

b.)
$$(4 \text{ loops} \Rightarrow n = 4)f_4 = ?$$

 $f_n = nf_1 \text{ so } f_7 = 7f_1 \text{ and } f_1 = \frac{f_7}{7} = \frac{280 \text{ Hz}}{7} = 40 \text{ Hz}$
 $f_4 = 4f_1 = 4(40 \text{ Hz})$
 $\boxed{f_4 = 160 \text{ Hz}}$

16