Work

Work (W) the product of the force exerted on an object and the distance the object moves in the direction of the force (constant force only).

$$
W=F \cdot \vec{d}=F d \cos \phi \quad(\mathbf{N} \cdot \mathbf{m}=\mathbf{J})
$$

ϕ is the angle between the force and the direction of motion.

2

Energy
Energy (E) the ability to do work.
Kinetic Energy (K) - the ability of an object to do work because of its motion.

$$
\begin{gathered}
W_{\text {net }}=F \Delta x=m a \Delta x \\
v_{f}^{2}=v_{i}^{2}+2 a \Delta x \quad \text { or } \quad a \Delta x=\frac{v_{f}^{2}-v_{i}^{2}}{2} \\
W_{\text {net }}=m\left(\frac{v_{f}^{2}-v_{i}^{2}}{2}\right) \\
W_{\text {net }}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \\
\text { Work and Energy }
\end{gathered}
$$

Work-Energy Theorem

The net work done by a net force acting on an object is equal to the change in the kinetic energy of the object.

$$
W_{n e t}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=K_{f}-K_{i}
$$

$$
W_{n e t}=\Delta K
$$

Gravity and Work

$$
W_{g}=F_{g} d \cos \phi_{g}=m g d \cos 0
$$

$$
d{ }^{F_{g}} \quad \phi_{g}=0
$$

Gravity does positive work when things fall.

Inclined Planes

On inclined planes, the work done by gravity depends upon the angle of the incline θ and the distance the object moves along the incline d.

$F_{g} \underbrace{\boldsymbol{\phi}_{g}=90^{\circ}-\theta}_{\phi_{g}^{d}} \boldsymbol{\phi}_{\text {Work and Energy }}$

Gravity and Work

$$
\begin{cases}W_{g}=F_{g} d \cos \phi_{g} & =m g d \cos 180^{\circ} \\ & =-m g d \\ F_{g} & \phi_{g}=180^{\circ}\end{cases}
$$

Gravity does negative work when things rise.

Gravitational Potential Energy

Potential Energy (\boldsymbol{U}) - the ability of an object to do work because of its position.

Gravitational Potential Energy $\left(U_{g}\right)$ - the ability of an object to do work because of its position in a gravitational field.

$$
U_{g}=F_{g} y=m g y
$$

Moving through a vertical distance Δy, the change in the gravitational potential energy for a mass (m) is:

$$
\Delta U_{g}=m g \Delta y
$$

Gravitational Potential Energy and Work

$$
\begin{aligned}
& \boldsymbol{W}_{g}=F_{g} d \cos \phi_{g}=\boldsymbol{m g d c o s} 0 \\
& =m g d=m g\left(y_{1}-y_{2}\right) \\
& =-m g\left(y_{2}-y_{1}\right) \\
& =-\left(m g y_{2}-m g y_{1}\right) \\
& =-\left(\boldsymbol{U}_{g_{2}}-\boldsymbol{U}_{g_{1}}\right)=-\Delta \boldsymbol{U}_{g}
\end{aligned}
$$

Work-Energy Theorem

$$
\begin{aligned}
W_{n e t} & =\Delta K \\
W_{g} & =\Delta K \\
-\Delta U_{g} & =\Delta K \\
-\left(U_{g_{f}}-U_{g_{i}}\right) & =K_{f}-K_{i} \\
-U_{g_{f}}+U_{g_{i}} & =K_{f}-K_{i} \\
K_{i}+U_{g_{i}} & =K_{f}+U_{g_{f}}
\end{aligned}
$$

Conservative versus Nonconservative Forces

A conservative force is one in which the work done on an object from one point to another does not depend upon the path taken by the object. For conservative forces:

$$
W_{F}=-\Delta U_{F} \text { and } \Delta K=-\Delta U_{F}
$$

A nonconservative force is one in which the work done on an object from one point to another does depend upon the path taken by the object. Friction and applied forces are examples of a nonconservative forces.

Conservation of Energy

If there is also work done by nonconservative forces such as friction and applied forces:

$$
K_{i}+U_{i}+W_{\text {other }}=K_{f}+U_{f}
$$

$W_{\text {other }}$ accounts for the work done by each nonconservative force.

This is a statement of Conservation of Energy.

Power

$\operatorname{Power}(P)$ - the rate of at which energy is transformed.

$$
P=\frac{\Delta E}{\Delta t}
$$

$$
\frac{\mathrm{J}}{\mathrm{~s}}=\mathrm{Watt}(\mathrm{~W}) \text { and } 1 \mathrm{hp}=746 \mathrm{~W}
$$

Power also measures the rate of at which energy is transformed as work.

$$
P=\frac{W}{\Delta t}
$$

Work and Energy

Power

When a force F acts on an object moving with velocity v, the instantaneous power or rate at which the force does work is:

$$
P=F \cdot \bar{v}=F v \cos \phi
$$

Work and Springs

To stretch a spring requires work.

$$
W=\frac{1}{2} k x_{2}^{2}-\frac{1}{2} k x_{1}^{2}
$$

Force and Springs

The force required to stretch a spring beyond its unstretched length by an amount x is

$$
F=k x \quad \text { (Hooke's Law) }
$$

where k is a constant called the force constant (or spring constant) of the spring.

Hooke's Law holds for compression as well as stretching, but the force and displacement are in opposite directions.

Elastic Potential Energy

Elastic Energy ($U_{\text {elastic }}$) - the potential energy stored in any compressed or stretched object such as a spring.

$$
U_{\text {elastic }}=\frac{1}{2} k x^{2}
$$

