## Position

# 1-Dimensional Motion of Objects 

## Displacement

Displacement $\left(x_{f}-x_{i}\right)$ is the change in position of an object. Displacement is a vector quantity because an object can move both negatively (backwards) and positively (forwards) with respect to its initial position.

Position ( $x$ ) is the separation between an object and a reference point. Position is a vector quantity and can be negative (behind the reference point) or positive (ahead of the reference point).

## Distance

Distance is the total path length traversed in moving from one point to another. Distance is a scalar quantity and is always positive.

1-D Motion

Distance versus Displacememt


Distance is $d_{1}+d_{2}=100 \mathrm{~m}+50 \mathrm{~m}=150 \mathrm{~m}$
Displacement is $\Delta x=x_{f}-x_{i}=50 \mathrm{~m}-0=50 \mathrm{~m}$

## Speed (m/s)

The speed of an object is the magnitude of its velocity.

Speed is a scalar quantity.

## Average Speed (m/s)

The average speed is the distance an object travels, divided by the time interval.

$$
\begin{gathered}
\text { average } \text { speed }=\frac{\text { distance }}{\text { time }} \\
\qquad s=\frac{d}{t}
\end{gathered}
$$

## Instantaneous Velocity (m/s)

The instantaneous velocity can be found from a graph of position versus time. It is equal to the slope of the tangent to the curve at a particular instant of time.

## Average Velocity (m/s)

The average velocity $\left(v_{a v}\right)$ is the displacement of an object, divided by the time interval during which the displacement occurs.

$$
v_{a v}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}=\frac{\Delta x}{\Delta t}
$$

## Instantaneous Velocity (m/s)

The instantaneous velocity $(v)$ is the velocity of an object at a specific instant of time.

$$
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}
$$

## Position versus Time Profiles

The slope of a position-time profile gives the instantaneous velocity.


## Position versus Time Profiles

The slope of a position-time profile gives the instantaneous velocity.


## Average Acceleration (m/s ${ }^{\mathbf{2}}$ )

The average acceleration $\left(a_{a v}\right)$ of a particle is the change in velocity divided by the time interval.

$$
a_{a v}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}=\frac{\Delta v}{\Delta t}
$$

## Instantaneous Acceleration (m/s $\mathbf{s}^{\mathbf{2}}$ )

The instantaneous acceleration can be found from a graph of velocity versus time.

## Position versus Time Profiles

The slope of a position-time profile gives the instantaneous velocity.


## Instantaneous Acceleration (m/s $\mathbf{s}^{\mathbf{2}}$ )

The instantaneous acceleration (a) is the acceleration of an object at a specific instant of time.

$$
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}
$$

## Velocity versus Time Profiles

The instantaneous acceleration is equal to the slope of the tangent to the curve at a particular instant of time.

The area under a velocity-time graph gives the displacement during that time period.


## Graphical Analysis

| Graph Type | Slope $\left(\frac{d}{d t}\right)$ | Area $\left(\int d t\right)$ |
| :--- | :--- | :--- |
| $x \operatorname{vs} t$ | $v$ | $-\ldots--$ |
| $v \operatorname{vs} t$ | $a$ | $\Delta x$ |
| $a \operatorname{vs} t$ | ----- | $\Delta v$ |

## Motion with Constant Acceleration

Constant acceleration is the special case in which the velocity changes at the same rate throughout the motion.

$$
\begin{gathered}
a=\frac{v-v_{0}}{t-t_{0}} \\
v=a\left(t-t_{0}\right)+v_{0} \\
v=a t+v_{0}
\end{gathered}
$$

## Motion with Constant Acceleration

The area under a velocity-time graph gives the displacement of the object.

$$
\begin{aligned}
& x-x_{0}=\frac{1}{2} a t^{2}+v_{0} t \\
& x=\frac{1}{2} a t^{2}+v_{0} t+x_{0}
\end{aligned}
$$

## Freely Falling Objects

An object falling under the influence of the earth's gravitational attraction is a situation in which there is constant acceleration towards the earth.
The ideal case in which there is no air resistance or decrease in acceleration with height is referred to as free fall. This includes rising as well as falling motion. For this idealized case the magnitude of the acceleration is:

$$
a=g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

