Equations of Motion for Projectiles

Projectile Motion

Projectile Motion in Two Dimensions

Horizontal Motion (x-direction)
No acceleration in the \boldsymbol{x}-direction so there is constant velocity and the equations of motion become

$$
\begin{array}{r}
x=v_{x_{0}} t+x_{0} \quad(x-\text { position }) \\
v_{x}=v_{x_{0}}(x-\text { velocity })
\end{array}
$$

Determining Initial Velocity Components

The initial velocities in the x and y directions are found from the initial velocity of the object and the angle at which the object is launched.

$$
\begin{array}{rr}
y=-\frac{1}{2} g t^{2}+v_{y_{0}} t+y_{0} & (y-\text { position }) \\
v_{y}=-g t+v_{y_{0}} & (y-\text { velocity })
\end{array}
$$

$$
\text { On Earth : } g=9.80 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Horizontally Launched Projectile

Ground-to-Ground Projectile

Maximum Height of a Projectile

When a projectile reaches its maximum height, the vertical (y) velocity is zero.

Projectile Motion

More Equations for Projectiles

Because projectiles are uniformly accelerating in the y-direction:

$$
\begin{aligned}
& y=\left(\frac{v_{y_{0}}+v_{y}}{2}\right) t+y_{0} \\
& v_{y}^{2}=v_{y_{0}}^{2}-2 g\left(y-y_{0}\right)
\end{aligned}
$$

左

Projectile Launched From a Height at an Angle

Maximum Height of a Projectile

At the maximum height the speed is equal to the x component of the initial velocity.

Projectile Motion

Uniform Circular Motion

Circular Motion

Centripetal Acceleration

Non-Uniform Circular Motion

If the speed also varies, there is a tangential component to the acceleration in addition to the radial component.

The tangential component is parallel to the path of motion.

$$
a_{t a n}=\frac{d|\vec{v}|}{d t}
$$

An object that moves in a circle at constant speed is said to experience uniform circular motion.

- The magnitude of the velocity remains constant.
- The direction of the velocity is continuously changing as the object moves around the circle.
- The object is accelerating because there is a change in velocity.

This acceleration is called centripetal acceleration and it points towards the center of the circle.

Centripetal Acceleration

$$
a_{r a d}=\frac{v^{2}}{r}
$$

In terms of the period of revolution (T)

$$
\begin{gathered}
v=\frac{2 \pi \cdot r}{T} \text { and } a_{r a d}=\frac{\left(\frac{2 \pi \cdot r}{T}\right)^{2}}{r}=\frac{4 \pi^{2} \cdot r}{T^{2}} \\
a_{r a d}=\frac{4 \pi^{2} \cdot r}{T^{2}}
\end{gathered}
$$

Non-Uniform Circular Motion

The vector acceleration of a particle moving in a circle with varying speed is the vector sum of the radial and tangential components of acceleration.

$$
\vec{a}=\vec{a}_{r a d}+\vec{a}_{t a n}
$$

$$
a=\sqrt{a_{r a d}^{2}+a_{t a n}^{2}}
$$

