Electric Current (Charges in Motion)

Electric Current (I)

The net amount of charge that passes through a conductor per unit time at any point. Current is defined as:

$$
I=\frac{d Q}{d t}
$$

Electric current is measured in coulomb's per second or amperes. ($\mathbf{1 A}=1 \mathrm{C} / \mathrm{s}$)

In a single circuit, the current at any instant is the same at one point as any other point. (Charge is conserved.)

Drift Velocity

The free electrons in conductors are in constant random motion, so there is no net flow of charge in any one particular direction.

If a steady electric field \bar{E} is established inside a conductor then charged particles are subjected to a steady force $\vec{F}=q \vec{E}$.

The charges moving in a conductor have frequent collisions with the massive nearly stationary ions of the material.

Drift Velocity

$\Delta Q=N e v_{d} A \Delta t \quad N=$ concentration of charges $\left(m^{-3}\right)$
$I=\frac{\Delta Q}{\Delta t}=N e v_{d} A$

Current Density

The current per unit cross-section area is called the current density J.

$$
\begin{gathered}
J=\frac{I}{A}=\frac{N e v_{d} A}{A} \\
J=N e v_{d}
\end{gathered}
$$

The electric field E in terms of current density J is:

$$
E=\rho \mathbf{J}
$$

The constant ρ is called the resistivity of the material.

Batteries (emf)

In order to produce an electric current in a circuit, a potential difference is needed. Batteries are one way of providing a difference in potential (called electromotive force or emf).

Ohm's Law

Georg Ohm (1787-1854)

- Current depends upon the conductivity of the material.
- It is more common to talk about resistance \boldsymbol{R} (inverse of conductivity) and express this relationship as:

$$
I=\frac{\Delta V}{R} \text { or } \Delta V=I \cdot R
$$

- The unit for resistance is called the ohm and is abbreviated Ω (omega)

Terminal Voltage

The potential difference in a real battery is not equal to the emf due to internal resistance within the battery. This lowers the voltage available to the circuit.

$V_{a b}$ is called the terminal voltage of the battery.

Schematic Diagrams

The direction of current is by convention the direction a positive charge moves through the circuit, which is towards the negative terminal of the battery.

For power sources: For resistive loads:

Resistance (R) and Resistivity (ρ)

It can be experimentally determined that the resistance of a wire is directly proportional to its length $\boldsymbol{\ell}$ and inversely proportional to its cross-sectional area A.

$$
R=\frac{\rho \ell}{A}
$$

The proportionality constant ρ is called the resistivity and depends upon the material used for the wire.

$$
\rho[=] \Omega \cdot \mathbf{m}
$$

Electric Power

To find the power transformed by an electric device recall that energy is $Q \Delta V$. Power is the rate energy is transformed in the device or:

$$
P=\frac{Q \Delta V}{t}=I \Delta V \quad P=I \Delta V
$$

The SI unit for power is a J / s or watt ($1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}$). For resistors, combining the above with Ohm's Law results in:

$$
P=I^{2} R=\frac{\Delta V^{2}}{R}
$$

Measuring Voltage

- Voltmeters are placed in parallel with the points between which the voltage measurement is made
- Voltmeters have a very high resistance and do not affect the circuit (they draw a very small current)

Measuring Current

- Ammeters are placed in series with the device through which the current measurement is made
- Ammeters have a very low resistance and do not affect the circuit (the voltage drop is very low)

Direct Current Circuits
16

Resistors in Series

$$
\begin{aligned}
& V_{a b}=\Delta V_{1}+\Delta V_{2}+\Delta V_{3}=I R_{1}+I R_{2}+I R_{3} \\
& V_{a b}=I\left(R_{1}+R_{2}+R_{3}\right) \\
& I=\frac{V_{a b}}{R_{1}+R_{2}+R_{3}}=\frac{V_{a b}}{R_{s}}
\end{aligned}
$$

Resistors in Series

- Current is the same through each resistor and is the same as the current in the equivalent resistance
- Voltage drop across each resistor is different unless the resistance is the same:

$$
\boldsymbol{R}_{\boldsymbol{s}}=\sum_{\boldsymbol{i}} \boldsymbol{R}_{\boldsymbol{i}}
$$

Resistors in Series (Voltage Divider)

$$
\begin{aligned}
& \stackrel{\sim}{b} \underbrace{I}_{R_{R_{2}}} \text { a } \\
& I=\frac{V_{a b}}{R_{1}+R_{2}} \\
& \Delta V_{1}=I R_{1}=\frac{V_{a b} R_{1}}{R_{1}+R_{2}} \quad \Delta V_{2}=I R_{2}=\frac{V_{a b} R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

Resistors in Parallel

- Voltage drop is the same across each resistor and the same as the voltage drop across the equivalent resistance
- Current is different through each resistor, the higher the resistance the lower the current

$$
\frac{\mathbf{1}}{\boldsymbol{R}_{p}}=\sum_{i} \frac{\mathbf{1}}{\boldsymbol{R}_{i}}
$$

Kirchhoff's Rules

1.) Junction Rule (Conservation of charge)

At any junction point, the sum of all currents entering the junction must equal the sum of all currents leaving the junction.

Kirchhoff's Rules

2.) Loop Rule (Conservation of energy)

The sum of the changes in potential around any closed path of a circuit is zero.

Voltmeters

A voltmeter consists of a resistor put in series with a galvanometer. The value of this resistance \boldsymbol{R}_{s} determines the full-scale reading of the meter ΔV_{v}.

$$
\begin{gathered}
\boldsymbol{I}_{f s} \boldsymbol{R}_{\boldsymbol{c}} \\
\boldsymbol{R}_{s} \\
\Delta \boldsymbol{V}_{v}=\boldsymbol{I}_{f s}\left(\boldsymbol{R}_{s}+\boldsymbol{R}_{c}\right) \\
\boldsymbol{R}_{s}=\frac{\left(\Delta \boldsymbol{V}_{v}-\boldsymbol{I}_{f s} \boldsymbol{R}_{c}\right)}{\boldsymbol{I}_{f s}}
\end{gathered}
$$

Direct Current Circuits

Some Tips

1.) The decrease in voltage between the two ends of a resistor is called a voltage drop $\left(V_{R}<0\right)$.
2.) Batteries provide an increase in potential difference.
3.) Label currents in each branch or loop with a symbol and arrow indicating the direction of the current. Let the algebra take care of the sign of the current. If you get a negative current it simply means it is in the opposite direction of what you assumed.

Galvanometers

- A galvanometer is simply a meter that deflects in proportion to the current running through it.
- The maximum deflection is called the full-scale deflection.
- The key characteristics of a galvanometer are
- The current $I_{f s}$ required for full-scale deflection.
- The resistance $\boldsymbol{R}_{\mathrm{c}}$ of the coil of wire in the meter.

$$
\underset{\Delta V=I R_{c}}{I} \underset{G}{I} R_{c}
$$

Ammeters

An ammeter consists of a resistor put in parallel (called a shunt resistor or shunt) with a galvanometer. The value of this resistance $\boldsymbol{R}_{\text {sh }}$ determines the fullscale reading of the meter $\boldsymbol{I}_{\boldsymbol{a}}$.

Direct Current Circuits

RC Circuits

$$
\begin{gathered}
\varepsilon-v_{a b}-v_{b c}=0 \\
\varepsilon-i R-\frac{q}{C}=0 \\
\varepsilon-R \frac{d q}{d t}-\frac{q}{C}=0
\end{gathered}
$$

Direct Current Circuits

RC Circuits (Charging)

$$
\begin{gathered}
\mathcal{E}-R \frac{d q}{d t}-\frac{q}{C}=0 \\
\frac{d q}{d t}=\frac{\mathcal{E}}{R}-\frac{q}{R C} \\
\frac{d q}{d t}=\frac{C \mathcal{E}-q}{R C} \\
\frac{d q}{d t}=-\frac{q-C \mathcal{E}}{R C} \\
\frac{d q}{q-C \mathcal{E}}=-\frac{d t}{R C} \\
-\frac{d t}{R C}=\frac{d q}{q-C \mathcal{E}}
\end{gathered}
$$

RC Circuits (Charging)

The charge on the capacitor varies according to:

$$
q(t)=Q_{f}\left(1-\mathrm{e}^{-t / \kappa c}\right)=C \mathcal{E}\left(1-\mathrm{e}^{-t / \kappa c}\right)
$$

The current at any time is given by:

$$
\begin{gathered}
i=\frac{d q}{d t}=\frac{\varepsilon}{R} \mathrm{e}^{-t / R C} \\
i=I_{0} \mathbf{e}^{-1 / / \mathrm{tc}}
\end{gathered}
$$

$R C$ is called the time constant (τ) and is the time it takes the capacitor to become 63.2% charged.

RC Circuits (Charging)

RC Circuits (Discharging)

$$
\begin{aligned}
& \Delta v_{C}-\Delta v_{R}=0 \\
& \frac{q}{C}-i R=0 \\
& \frac{q}{C}+R \frac{d q}{d t}=0 \quad\left(i=-\frac{d q}{d t}\right)
\end{aligned}
$$

37

RC Circuits (Discharging)

The charge on the capacitor varies according to:

$$
\boldsymbol{q}=\boldsymbol{Q}_{\mathbf{0}} \mathbf{e}^{-t / k c}
$$

The current at any time is given by:

$$
\begin{gathered}
i=-\frac{d q}{d t}=\frac{Q_{0}}{R C} \mathbf{e}^{-1 / k c} \\
i=\boldsymbol{I}_{\mathbf{0}} \mathbf{e}^{-1 / k c} \\
i
\end{gathered}
$$

RC Circuits (Discharging)

$R C$ Circuits (Discharging)

$$
\begin{gathered}
\frac{q}{C}+R \frac{d q}{d t}=0 \\
\frac{d q}{d t}=-\frac{q}{R C} \\
\frac{d q}{q}=-\frac{d t}{R C} \\
\frac{q}{q} \frac{d q}{t}=\int_{0}^{t}-\frac{d t}{R C} \\
Q_{0} \\
\ln (q)-\ln \left(Q_{0}\right)=-\frac{t}{R C}-0 \\
\ln \left(\frac{q}{Q_{0}}\right)=-\frac{t}{R C} \\
\frac{q}{Q_{0}}=e^{-1 / R C} \\
q=-\cdots Q_{0} e^{-i / R C}
\end{gathered}
$$

RC Circuits (Discharging)

$$
q=Q_{\mathbf{0}} \mathrm{e}^{-1 / k c}
$$

$$
\boldsymbol{i}=\boldsymbol{I}_{0} \mathbf{e}^{-1 / k c}
$$

RC Circuits

Uncharged

Fully Charged

Charged capacitor has same voltage as the device that is electrically parallel to it.

