Example 8:
A point charge with charge $-q$ is located in the center of a spherical conductive shell with an inner radius R_{1} and outer radius R_{2}.
a.) Find the magnitude of the electric field at a point P a distance r from the center of the spherical shell.
b.) Repeat (a.) if the outer shell is connected to ground.

Example 8a:

Example 8b:

$$
E=\frac{q_{e n c}}{4 \pi \varepsilon_{0} r^{2}}
$$

$$
\begin{gathered}
\left(0<r<R_{1}\right) E=\frac{-q}{4 \pi \varepsilon_{0} r^{2}} \\
\left(R_{1}<r<R_{2}\right) E=\frac{-q+q}{4 \pi \varepsilon_{0} r^{2}}=0
\end{gathered}
$$

$$
\left(R_{2}<r\right) E=\frac{-q+q}{4 \pi \varepsilon_{0} r^{2}}=0
$$

Example 8b:

Example 9:

Use Gauss's Law to find the electric field just outside an infinite conductive surface with a charge density σ.

For conductive spheres the E-field just above its surface is the electric field outside the sphere evaluated at $r=R$.

$$
E=\frac{\sigma R^{2}}{\varepsilon_{0} r^{2}}=\frac{\sigma}{\varepsilon_{0}}
$$

For conductive cylinders the E-field just above its surface is the electric field outside the cylinder evaluated at $r=R$.

$$
E=\frac{\sigma R}{\varepsilon_{0} r}=\frac{\sigma}{\varepsilon_{0}}
$$

Example 10:
Use Gauss's Law to find the electric field just outside an infinite nonconductive surface with a charge density σ.

Example 11:

Two large nonconducting parallel plates are given charges of equal magnitude and opposite sign; the charge per unit area is $+\sigma$ for one and $-\sigma$ for the other. Find the electric field in the region between the plates.

Example 11

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{E}_{+}+\vec{E}_{-}=0 \quad \stackrel{\rightharpoonup}{E}_{+}+\vec{E}_{-}=\frac{\sigma}{\varepsilon_{0}} \quad \stackrel{\rightharpoonup}{E}_{+}+\stackrel{\rightharpoonup}{E}_{-}=0
\end{aligned}
$$

Example 12:
A slab of insulating material has a nonuniform positive charge density of $\rho=C x^{2}$, where x is measured from the center of the slab, as shown below. The slab is infinite in the y and z directions. Derive expressions for the electric field in (a) the exterior regions and (b) the interior region of the slab $(-d / 2<x<d / 2)$.

Example 13:

A solid insulating sphere of radius R has a nonuniform charge density that varies with r according to the expression

$$
\rho=A r^{2}
$$

where A is a constant and $r<R$ is measured from the center of the sphere. Use Gauss's law to determine the magnitude of the electric field at radial distances (a) $r<R$ and (b) $r>R$.
b.) Sometimes the total charge is given as Q.

$$
\begin{aligned}
& q_{\text {enc }}=Q=\frac{4 \pi A R^{5}}{5} \\
& A=\frac{5 Q}{4 \pi R^{5}} \\
& \text { so } E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}(r>R) \\
& \text { and } E=\frac{Q r^{3}}{4 \pi \varepsilon_{0} R^{5}} \quad(r<R)
\end{aligned}
$$

Example 12:
a.) $x<-\frac{d}{2}$ or $x>\frac{d}{2}$

$$
q_{e n c}=\int \rho d V
$$

$\rho=C x^{2}$
$d V=A d x$
$\left.q_{\text {enc }}=\int_{-\frac{d}{2}}^{\frac{d}{2}} C x^{2} A d x=C A \frac{x^{3}}{3}\right]_{-\frac{d}{2}}^{\frac{d}{2}}=\frac{C A d^{3}}{12}$
$\oint \vec{E} \cdot d \vec{A}=\frac{q_{e n c}}{\varepsilon_{0}}$

b.) $-\frac{d}{2}<x<\frac{d}{2}$

$$
\left.q_{e n c}=\int_{-x}^{x} C x^{2} A d x=C A \frac{x^{3}}{3}\right]_{-x}^{x}=\frac{2 C A x^{3}}{3}
$$

$\oint \vec{E} \cdot d \vec{A}=\frac{q_{\text {enc }}}{\varepsilon_{0}}$
$E \cdot 2 A=\frac{\frac{2 C A x^{3}}{3}}{\varepsilon_{0}}$
$E=\frac{C x^{3}}{3 \varepsilon_{0}}$

Example 13:

$$
q_{e n c}=\int \rho d V \quad \rho=A r^{2} \quad d V=4 \pi r^{2} d r
$$

a.) $r<R$

$$
\begin{aligned}
& \left.q_{e n c}=\int_{0}^{r} A r^{2} 4 \pi r^{2} d r=4 \pi A \int_{0}^{r} r^{4} d r=4 \pi A \frac{r^{5}}{5}\right]_{0}^{r}=\frac{4 \pi A r^{5}}{5} \\
& \oint \vec{E} \cdot d \vec{A}=\frac{q_{e n c}}{\varepsilon_{0}} \text { so } E \cdot 4 \pi r^{2}=\frac{4 \pi A r^{5}}{5 \varepsilon_{0}} \text { and } E=\frac{A r^{3}}{5 \varepsilon_{0}}
\end{aligned}
$$

b.) $r>R$

$$
\begin{aligned}
q_{e n c} & \left.=\int_{0}^{R} A r^{2} 4 \pi r^{2} d r=4 \pi A \int_{0}^{R} r^{4} d r=4 \pi A \frac{r^{5}}{5}\right]_{0}^{R}=\frac{4 \pi A R^{5}}{5} \\
& \oint \vec{E} \cdot d \vec{A}=\frac{q_{e n c}}{\varepsilon_{0}} \text { so } E \cdot 4 \pi r^{2}=\frac{4 \pi A R^{5}}{5 \varepsilon_{0}} \text { and } E=\frac{A R^{5}}{5 \varepsilon_{0} r^{2}}
\end{aligned}
$$

Example 14:

An infinitely long insulating cylinder of radius R has a volume charge density that varies with the radius as

$$
\rho=\rho_{0}\left(a-\frac{r}{b}\right)
$$

where ρ_{0}, a, and b are positive constants and r is the distance from the axis of the cylinder. Use Gauss's law to determine the magnitude of the electric field at radial distances (a) $r<R$ and (b) $r>R$.

Example 14: $\quad q_{\text {enc }}=\int \rho d V \quad \rho=\rho_{0}\left(a-\frac{r}{b}\right) \quad d V=2 \pi r \ell d r$

$$
\begin{array}{r}
\text { a.) } \begin{array}{r}
\left.r<R \quad q_{e n c}=\int_{0}^{r} \rho_{0}\left(a-\frac{r}{b}\right) 2 \pi r \ell d r=2 \pi \rho_{0} \ell \int_{0}^{r}\left(a r-\frac{r^{2}}{b}\right) d r=2 \pi \rho_{0} \ell\left(\frac{a r^{2}}{2}-\frac{r^{3}}{3 b}\right]_{0}^{r}\right) \\
q_{e n c}=2 \pi \rho_{0} \ell\left(\frac{a r^{2}}{2}-\frac{r^{3}}{3 b}\right) \\
\Phi \vec{E} \cdot d \vec{A}=\frac{q_{e n c}}{\varepsilon_{0}} \quad \text { so } E \cdot 2 \pi r \ell=\frac{2 \pi \rho_{0} \ell\left(\frac{a r^{2}}{2}-\frac{r^{3}}{3 b}\right)}{\varepsilon_{0}} \quad \text { and } E=\frac{\rho_{0} r}{2 \varepsilon_{0}}\left(a-\frac{2 r}{3 b}\right)
\end{array}
\end{array}
$$

b.) $\left.\quad r>R \quad q_{e n c}=\int_{0}^{R} \rho_{0}\left(a-\frac{r}{b}\right) 2 \pi r \ell d r=2 \pi \rho_{0} \ell\left(\frac{a r^{2}}{2}-\frac{r^{3}}{3 b}\right]_{0}^{R}\right)=2 \pi \rho_{0} \ell\left(\frac{a R^{2}}{2}-\frac{R^{3}}{3 b}\right)$

$$
\oint \vec{E} \cdot d \vec{A}=\frac{q_{e n c}}{\varepsilon_{0}} \quad \text { so } E \cdot 2 \pi r \ell=\frac{2 \pi \rho_{0} \ell\left(\frac{a R^{2}}{2}-\frac{R^{3}}{3 b}\right)}{\varepsilon_{0}} \text { and } E=\frac{\rho_{0} R^{2}}{2 \varepsilon_{0} r}\left(a-\frac{2 R}{3 b}\right)
$$

Example 14: Nonuniformly Charged Cylindrical Insulator

