Newton's 2nd Law and Momentum (*p*)

Newton's 2nd Law

$$\sum \bar{F} = m\bar{a} = m\frac{d\bar{v}}{dt} = \frac{d}{dt} (m\bar{v})$$

Newton's 2nd Law says that the net force on an object is the time rate of change of the product of the object's mass and velocity. This combination is called the *momentum* or *linear momentum*, of the object.

Linear Momentum

Linear Momentum

1

3

5

Linear Momentum and its

Conservation

Newton's 2nd Law and Momentum

Newton's 2nd Law can therefore be expressed in terms of momentum.

$$\sum F = \frac{dp}{dt} \qquad \overline{F} = \frac{dp}{dt}$$

The net force acting on an object equals the time rate of change of momentum of the object.

Linear Momentum

Impulse (J)

Consider an object acted on by a *constant net force* during a time interval Δt from t_1 to t_2 . The *impulse J* of the net force is defined to be the product of the net force and the time interval.

$$\vec{J} = \sum \vec{F} dt = \int \vec{F} dt$$

The units of impulse are $N \cdot s$. Since $1 N = kg \cdot m/s^2$, the impulse has the same units as momentum (kg \cdot m/s).

Linear Momentum

Impulse-Momentum Theorem

If the forces are not constant then:

This is the area under a force versus time graph over the specified time interval.

Impulse-Momentum Theorem

If the net force is constant then:

$$\sum F = \frac{d\bar{p}}{dt} = \frac{\bar{p}_2 - \bar{p}_1}{t_2 - t_1}$$
$$\sum F(t_2 - t_1) = \bar{p}_2 - \bar{p}_1$$
$$J = \bar{p}_2 - \bar{p}_1$$

The change in momentum of a object during a time interval equals the impulse of the net force that acts on the object during that interval.

Linear Momentum

Linear Momentum

6

2

4

Conservation of Momentum

The momentum of any closed, isolated system does not change. *This is true only if the vector sum of the external forces acting on the system is zero.*

$$\sum_{n} \vec{p}_{n_{i}} = \sum_{n} \vec{p}_{n_{f}}$$
$$\vec{p}_{1_{i}} + \vec{p}_{2_{i}} + \dots + \vec{p}_{n_{i}} = \vec{p}_{1_{f}} + \vec{p}_{2_{f}} + \dots + \vec{p}_{n_{f}}$$

Where:

 \bar{p}_{n_i} = initial momentum vector of object *n* \bar{p}_{n_i} = final momentum vector of object *n*

Linear Momentum

7

9

Conservation of Momentum

For 2-D problems, the *x* and *y* components of momentum must be treated separately.

$$\sum_{n} p_{x_{n_i}} = \sum_{n} p_{x_{n_f}} \text{ and } \sum_{n} p_{y_{n_i}} = \sum_{n} p_{y_{n_f}}$$

Linear Momentum

8

Inelastic Collisions Between Objects

- •Momentum is conserved.
- •Kinetic Energy is not conserved.
- •When objects stick together the collision is called a *completely inelastic collision*.

Linear Momentum

Elastic Collisions Between Objects

•Momentum is conserved.

•Kinetic Energy is also conserved.

Collisions Between Objects

In any collision, momentum is conserved and the total momentum before equals the total momentum after; in elastic collisions only, the total kinetic energy before equals the total kinetic energy after.

1D Elastic Collisions Between Objects

Linear Momentum

Linear Momentum

11

Linear Momentum

12

10

1D Elastic Collisions Between Objects

$$(2) \frac{1}{2}m_{1}v_{1_{i}}^{2} + \frac{1}{2}m_{2}v_{2_{i}}^{2} = \frac{1}{2}m_{1}v_{1_{f}}^{2} + \frac{1}{2}m_{2}v_{2_{f}}^{2}$$

$$m_{1}v_{1_{i}}^{2} + m_{2}v_{2_{i}}^{2} = m_{1}v_{1_{f}}^{2} + m_{2}v_{2_{f}}^{2}$$

$$m_{1}(v_{1_{i}}^{2} - v_{1_{f}}^{2}) = m_{2}(v_{2_{f}}^{2} - v_{2_{i}}^{2})$$

$$(3) m_{1}(v_{1_{i}} - v_{1_{f}})(v_{1_{i}} + v_{1_{f}}) = m_{2}(v_{2_{f}} - v_{2_{i}})(v_{2_{f}} + v_{2_{i}})$$

$$(1) m_{1}v_{1_{i}} + m_{2}v_{2_{i}} = m_{1}v_{1_{f}} + m_{2}v_{2_{f}}$$

$$m_{1}v_{1_{i}} - m_{1}v_{1_{f}} = m_{2}v_{2_{f}} - m_{2}v_{2_{i}}$$

$$(4) m_{1}(v_{1_{i}} - v_{1_{f}}) = m_{2}(v_{2_{f}} - v_{2_{i}})$$

$$Linear Momentum 13$$

1D Elastic Collisions Between Objects

$$(4) \quad m_{1}(v_{1_{i}} - v_{1_{f}}) = m_{2}(v_{2_{f}} - v_{2_{i}})$$

$$(3) \quad m_{1}(v_{1_{i}} - v_{1_{f}})(v_{1_{i}} + v_{1_{f}}) = m_{2}(v_{2_{f}} - v_{2_{i}})(v_{2_{f}} + v_{2_{i}})$$

$$(5) \quad (v_{1_{i}} + v_{1_{f}}) = (v_{2_{f}} + v_{2_{i}})$$

$$(6) \quad (v_{1_{i}} - v_{2_{i}}) = -(v_{1_{f}} - v_{2_{f}})$$

The relative speed of the objects before the collision equals the negative of the relative speed after the collision.

(1)
$$m_1 v_{1_i} + m_2 v_{2_i} = m_1 v_{1_f} + m_2 v_{2_f}$$

Linear Momentum 14

Center of Mass

The center of mass of a system of particles is given by:

$$\boxed{\begin{array}{c} \sum_{i=1}^{i} m_{i} x_{i} \\ x_{cm} = \frac{\sum_{i=1}^{i} m_{i} x_{i}}{\sum_{i=1}^{i} m_{i}} \end{array}} \text{ and } y_{cm} = \frac{\sum_{i=1}^{i} m_{i} y_{i}}{\sum_{i=1}^{i} m_{i}}$$

The center of mass is the mass-weighted average position of the particles.

Linear Momentum 16

Motion of the Center of Mass

Linear Momentum

The velocity of the center of mass of a system of particles is given by (time derivatives of x_{cm} and y_{cm})

$$v_{\mathrm{cm}_x} = \frac{\sum_{i} m_i v_{i_x}}{\sum_{i} m_i}$$
 and $v_{\mathrm{cm}_y} = \frac{\sum_{i} m_i v_{i_y}}{\sum_{i} m_i}$

These are equivalent to the vector equation

$$\vec{v}_{cm} = \frac{\sum_{i} m_{i} \vec{v}_{i}}{\sum_{i} m_{i}}$$

Linear Momentum

15

Motion of the Center of Mass

$$\bar{v}_{cm} = \frac{\sum m_i \bar{v}_i}{\sum m_i}$$
 so $\sum m_i \bar{v}_{cm} = \sum m_i \bar{v}_i$

If we denote the total mass $m_1 + m_2 + \cdots$ by *M* then

$$M\bar{v}_{cm} = \sum_{i} m_i \bar{v}_i = m_1 \bar{v}_1 + m_2 \bar{v}_2 + m_3 \bar{v}_3 + \dots = P$$

P is the total momentum of the system of particles. The total momentum is equal to the total mass times the velocity of the center of mass.

Linear Momentum

18

Center of Mass