Newton's $2^{\text {nd }}$ Law and Momentum (p)

Linear Momentum and its Conservation

Newton's $2^{\text {nd }}$ Law

$$
\sum \stackrel{\rightharpoonup}{F}=m \bar{a}=m \frac{d \stackrel{\rightharpoonup}{v}}{d t}=\frac{d}{d t}(m \bar{v})
$$

Newton's $2^{\text {nd }}$ Law says that the net force on an object is the time rate of change of the product of the object's mass and velocity. This combination is called the momentum or linear momentum, of the object.
$\vec{p}=\boldsymbol{m} \overrightarrow{\boldsymbol{v}} \quad$ (definition of momentum)

Impulse (J)

Consider an object acted on by a constant net force during a time interval Δt from t_{1} to t_{2}. The impulse J of the net force is defined to be the product of the net force and the time interval.

$$
\vec{J}=\sum \vec{F} d t=\int \bar{F} d t
$$

The units of impulse are $\mathbf{N} \cdot$ s. Since $1 \mathbf{N}=\mathrm{kg} \cdot$ $\mathrm{m} / \mathbf{s}^{\mathbf{2}}$, the impulse has the same units as momentum ($\mathrm{kg} \cdot \mathrm{m} / \mathbf{s}$).

Linear Momentum

Impulse-Momentum Theorem

If the forces are not constant then:

$$
\vec{J}=\int \stackrel{\rightharpoonup}{F} d t=\Delta \vec{p}
$$

This is the area under a force versus time graph over the specified time interval.

The change in momentum of a object during a time interval equals the impulse of the net force that acts on the object during that interval.

Conservation of Momentum

The momentum of any closed, isolated system does not change. This is true only if the vector sum of the external forces acting on the system is zero.

$$
\begin{gathered}
\sum_{n} \vec{p}_{n_{i}}=\sum_{n} \vec{p}_{n_{f}} \\
\vec{p}_{1_{i}}+\vec{p}_{2_{i}}+\cdots+\vec{p}_{n_{i}}=\vec{p}_{1_{f}}+\vec{p}_{2_{f}}+\cdots+\vec{p}_{n_{f}}
\end{gathered}
$$

Where:
$\overrightarrow{\boldsymbol{p}}_{n_{i}}=$ initial momentum vector of object n
$\vec{p}_{n_{f}}=$ final momentum vector of object n

Inelastic Collisions Between Objects

\bullet Momentum is conserved.
-Kinetic Energy is not conserved.
-When objects stick together the collision is called a completely inelastic collision.

Collisions Between Objects

In any collision, momentum is conserved and the total momentum before equals the total momentum after; in elastic collisions only, the total kinetic energy before equals the total kinetic energy after.

Conservation of Momentum

For 2-D problems, the x and y components of momentum must be treated separately.

$$
\sum_{n} p_{x_{n_{i}}}=\sum_{n} p_{x_{n_{f}}} \text { and } \sum_{n} p_{y_{n_{i}}}=\sum_{n} p_{y_{n_{f}}}
$$

\bullet Momentum is conserved.
-Kinetic Energy is also conserved.

1D Elastic Collisions Between Objects

1D Elastic Collisions Between Objects
(2) $\frac{1}{2} m_{1} v_{1_{i}}{ }^{2}+\frac{1}{2} m_{2} v_{2_{i}}{ }^{2}=\frac{1}{2} m_{1} v_{1_{j}}{ }^{2}+\frac{1}{2} m_{2} v_{2_{f}}{ }^{2}$

$$
\begin{aligned}
& m_{1} v_{1_{i}}^{2}+m_{2} v_{2_{i}}^{2}=m_{1} v_{1_{f}}^{2}+m_{2} v_{2_{f}}^{2} \\
& m_{1}\left(v_{1_{i}}^{2}-v_{1_{f}}^{2}\right)=m_{2}\left(v_{2_{f}}^{2}-v_{2_{i}}^{2}\right)
\end{aligned}
$$

(3) $m_{1}\left(v_{1_{i}}-v_{1_{f}}\right)\left(v_{1_{i}}+v_{1_{f}}\right)=m_{2}\left(v_{2_{f}}-v_{2_{i}}\right)\left(v_{2_{f}}+v_{2_{i}}\right)$
(1) $m_{1} v_{1_{i}}+m_{2} v_{2_{i}}=m_{1} v_{1_{f}}+m_{2} v_{2_{f}}$ $m_{1} v_{1_{i}}-m_{1} v_{1_{f}}=m_{2} v_{2_{f}}-m_{2} v_{2_{i}}$
(4) $m_{1}\left(v_{1_{i}}-v_{1_{f}}\right)=m_{2}\left(v_{2_{f}}-v_{2_{i}}\right)$

Center of Mass

Motion of the Center of Mass

The velocity of the center of mass of a system of particles is given by (time derivatives of x_{cm} and y_{cm})

$$
v_{\mathrm{cm}_{x}}=\frac{\sum_{i} m_{i} v_{i_{x}}}{\sum_{i} m_{i}} \quad \text { and } \quad v_{\mathrm{cm}_{y}}=\frac{\sum_{i} m_{i} v_{i_{y}}}{\sum_{i} m_{i}}
$$

These are equivalent to the vector equation

$$
\vec{v}_{c m}=\frac{\sum_{i} m_{i} \vec{v}_{i}}{\sum_{i} m_{i}}
$$

1D Elastic Collisions Between Objects
(4) $m_{1}\left(v_{1_{i}}-v_{1_{f}}\right)=m_{2}\left(v_{2_{f}}-v_{2_{i}}\right)$
(3) $m_{1}\left(v_{i_{i}}-v_{1_{f}}\right)\left(v_{1_{i}}+v_{1_{f}}\right)=m_{2}\left(v_{z_{f}}-v_{2_{i}}\right)\left(v_{2_{f}}+v_{2_{i}}\right)$
(5) $\left(v_{1_{i}}+v_{1_{f}}\right)=\left(v_{2_{f}}+v_{2_{i}}\right)$
(6) $\left(v_{1_{i}}-v_{2_{i}}\right)=-\left(v_{1_{f}}-v_{2_{f}}\right)$

The relative speed of the objects before the collision equals the negative of the relative speed after the collision.
(1) $m_{1} v_{1_{i}}+m_{2} v_{2_{i}}=m_{1} v_{1_{f}}+m_{2} v_{2_{f}}$

Center of Mass

The center of mass of a system of particles is given by:

$$
x_{\mathrm{cm}}=\frac{\sum_{i} m_{i} x_{i}}{\sum_{i} m_{i}} \quad \text { and } \quad y_{\mathrm{cm}}=\frac{\sum_{i} m_{i} y_{i}}{\sum_{i} m_{i}}
$$

The center of mass is the mass-weighted average position of the particles.

Motion of the Center of Mass

$$
\vec{v}_{c m}=\frac{\sum_{i} m_{i} \vec{v}_{i}}{\sum_{i} m_{i}} \text { so } \quad \sum_{i} m_{i} \vec{v}_{c m}=\sum_{i} m_{i} \vec{v}_{i}
$$

If we denote the total mass $m_{1}+m_{2}+\cdots$ by M then

$$
M \vec{v}_{\mathrm{cm}}=\sum_{i} m_{i} \vec{v}_{i}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+m_{3} \vec{v}_{3}+\cdots=P
$$

P is the total momentum of the system of particles. The total momentum is equal to the total mass times the velocity of the center of mass.

