# **Periodic Motion**

*Periodic Motion* is motion that repeats itself over and over.

The amplitude A of the motion is the maximum displacement from the equilibrium position.

The period T is the time for one cycle of motion.

The frequency *f* is the number of cycles in a unit of time.

The angular frequency  $\omega$  is  $2\pi$  times the frequency.

$$f = \frac{1}{T}$$
  $\omega = 2\pi f = \frac{2\pi}{T}$   $T = \frac{2\pi}{\omega} = \frac{1}{f}$ 

2

Periodic Motion

1

**Periodic Motion** 

# **Simple Harmonic Motion**

Simple Harmonic Motion is periodic motion in which the restoring force is directly proportional to the displacement from the equilibrium position.

# F = -kx = ma $a = \frac{d^2 x}{dt^2} = -\frac{k}{m}x = -\omega^2 x$

 $\sqrt{\frac{k}{m}}$ 

3

A solution to this differential equation is:

$$x = A\cos(\omega t) \text{ where } \omega = \frac{\omega}{\omega t = 1}$$

$$x = x_{\max}\cos(\omega t + \phi)$$
Periodic Motion

# **Simple Harmonic Motion**

Periodic Motion

The velocity and acceleration of the object are:

$$v = \frac{dx}{dt} = -\omega A \sin(\omega t)$$

$$a = \frac{d^2 x}{dt^2} = -\omega^2 A \cos(\omega t)$$

$$= -\omega^2 x$$

$$\frac{d^2 x}{dt^2} = -\frac{k}{m} x \text{ where } \omega = \sqrt{\frac{k}{m}}$$
Periodic Motion 4

### **Graphs for Periodic Motion**



Periodic Motion

### **Graphs for Periodic Motion**



### **Energy in Simple Harmonic Motion**

The total energy is the sum of the kinetic and potential energies of the object.

$$E = K + U = \frac{1}{2}mv^{2} + \frac{1}{2}kx^{2}$$

$$E = \frac{1}{2}m(-\omega A\sin(\omega t))^{2} + \frac{1}{2}k(A\cos(\omega t))^{2}$$

$$E = \frac{1}{2}kA^{2}\sin^{2}(\omega t) + \frac{1}{2}kA^{2}\cos^{2}(\omega t)$$

$$E = \frac{1}{2}kA^{2}(\sin^{2}(\omega t) + \cos^{2}(\omega t))$$

$$\frac{\left[E = \frac{1}{2}kA^{2}\right]}{\text{Periodic Motion}}$$

7

### **Energy in Periodic Motion**



# **The Simple Pendulum**

A *simple pendulum* is an idealized model consisting of a point mass suspended by a massless, unstretchable string.



### The Simple Pendulum

The angular frequency  $\omega$  of a simple pendulum with small amplitude is:



Periodic Motion

#### 10

### **The Physical Pendulum**

If a pendulum bob cannot be approximated as a point mass, we cannot treat the system as a simple pendulum.



### **The Torsional Pendulum**

A torsional pendulum consists of a body suspended by a wire attached to a fixed point.



### **Simple Harmonic Motion**

| Springs                                    | Simple<br>Pendulum                   | Physical<br>Pendulum                         | Torsional<br>Pendulum              |
|--------------------------------------------|--------------------------------------|----------------------------------------------|------------------------------------|
| $\boldsymbol{\omega} = \sqrt{\frac{k}{m}}$ | $\omega = \sqrt{\frac{g}{L}}$        | $\boldsymbol{\omega} = \sqrt{\frac{mgd}{I}}$ | $\omega = \sqrt{\frac{\kappa}{I}}$ |
| $T=2\pi\sqrt{rac{m}{k}}$                  | $T=2\pi\sqrt{rac{L}{g}}$            | $T = 2\pi \sqrt{\frac{I}{mgd}}$              | $T = 2\pi \sqrt{\frac{I}{\kappa}}$ |
| $T_s = 2\pi \sqrt{\frac{m}{k}}$            | $T_{P} = 2\pi \sqrt{\frac{\ell}{g}}$ |                                              | 13                                 |

### **Vertical Spring Amplitude Situation 1:**



# Vertical Spring Amplitude Situation 1:

| $y^{2} + 2y\Delta y_{1} + \Delta y_{1}^{2} = y^{2} - 2y\Delta y_{2} + \Delta y_{2}^{2} + \frac{2mg}{k}(\Delta y_{1} + \lambda y_{2}) + \frac{2mg}{k}(\Delta y_{1} + \lambda y$ | $(y_2)$                     |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|
| $2y\Delta y_1 + \Delta y_1^2 = -2y\Delta y_2 + \Delta y_2^2 + \frac{2mg}{k}\Delta y_1 + \frac{2mg}{k}\Delta y_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <sup>2</sup> / <sub>2</sub> |  |  |  |
| $2\frac{mg}{k}\Delta y_1 + \Delta y_1^2 = -2\frac{mg}{k}\Delta y_2 + \Delta y_2^2 + \frac{2mg}{k}\Delta y_1 + \frac{2mg}{k}\Delta y_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Delta y_2$                |  |  |  |
| $\Delta y_1^2 = \Delta y_2^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |  |  |  |
| $\Delta y_1 = \Delta y_2$ and $A = \Delta y_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |  |  |  |
| Periodic Motion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15                          |  |  |  |

# **Vertical Spring Amplitude Situation 2:**



### 16

18

# **Vertical Spring Amplitude Situation 2:**

| $mg\Delta y_1 = \frac{1}{2}k\Delta y_1^2$ |  |  |  |
|-------------------------------------------|--|--|--|
| $\frac{2mg}{k} = \Delta y_1$              |  |  |  |
| $\Delta y_1 = 2A$                         |  |  |  |
| $A = \frac{mg}{k}$                        |  |  |  |
|                                           |  |  |  |

**Breakdown of Problems Test 7** 

| General Periodic Motion (SHM) 13 |   |  |  |
|----------------------------------|---|--|--|
| Simple Pendulum 8                |   |  |  |
| Spring 19                        |   |  |  |
| Gravity 27                       |   |  |  |
| Elliptical Orbits 8              |   |  |  |
| Escape Velocity 3                |   |  |  |
| Physical Pendulum                | 1 |  |  |
| Torsional Pendulum               | 1 |  |  |

Periodic Motion