Periodic Motion

Periodic Motion

Periodic Motion is motion that repeats itself over and over.

The amplitude \boldsymbol{A} of the motion is the maximum displacement from the equilibrium position.

The period \boldsymbol{T} is the time for one cycle of motion.
The frequency f is the number of cycles in a unit of time.
The angular frequency ω is $\mathbf{2} \boldsymbol{\pi}$ times the frequency.

$$
f=\frac{1}{T} \quad \omega=2 \pi f=\frac{2 \pi}{T} \quad T=\frac{2 \pi}{\omega}=\frac{1}{f}
$$

Simple Harmonic Motion

The velocity and acceleration of the object are:

$$
\begin{aligned}
v=\frac{d x}{d t}= & -\omega A \sin (\omega t) \\
a=\frac{d^{2} x}{d t^{2}} & =-\omega^{2} A \cos (\omega t) \\
& =-\omega^{2} x \\
\frac{d^{2} x}{d t^{2}} & =-\frac{k}{m} x \text { where } \omega=\sqrt{\frac{k}{m}}
\end{aligned}
$$

Periodic Motion

Graphs for Periodic Motion

Graphs for Periodic Motion

Energy in Simple Harmonic Motion

The total energy is the sum of the kinetic and potential energies of the object.

$$
\begin{gathered}
E=K+U=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2} \\
E=\frac{1}{2} m(-\omega A \sin (\omega t))^{2}+\frac{1}{2} k(A \cos (\omega t))^{2} \\
E=\frac{1}{2} k A^{2} \sin ^{2}(\omega t)+\frac{1}{2} k A^{2} \cos ^{2}(\omega t) \\
E=\frac{1}{2} k A^{2}\left(\sin ^{2}(\omega t)+\cos ^{2}(\omega t)\right) \\
E=\frac{1}{2} k A^{2} \\
\text { Periodic Motion }
\end{gathered}
$$

Energy in Periodic Motion

The Simple Pendulum

A simple pendulum is an idealized model consisting of a point mass suspended by a massless, unstretchable string.

The Physical Pendulum

If a pendulum bob cannot be approximated as a point mass, we cannot treat the system as a simple pendulum.

$$
\begin{aligned}
\tau & =I \alpha \\
-m g d \sin \theta & =I \frac{d^{2} \theta}{d t^{2}} \\
-m g d \theta & =I \frac{d^{2} \theta}{d t^{2}} \quad(\theta \text { small }) \\
\frac{d^{2} \theta}{d^{2}} & =-\left(\frac{m g d}{I}\right) \theta \\
& =-\omega^{2} \theta \quad(\mathbf{S H M}) \quad \omega=\sqrt{\frac{m g d}{I}}
\end{aligned}
$$

The Simple Pendulum

The angular frequency ω of a simple pendulum with small amplitude is:

$$
\begin{gathered}
F=-\frac{m g}{L} x=-k x \\
\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{m g / L}{m}}=\sqrt{\frac{g}{L}}
\end{gathered}
$$

The Torsional Pendulum

A torsional pendulum consists of a body suspended by a wire attached to a fixed point.

$$
\tau=-\kappa \theta=I \frac{d^{2} \theta}{d t^{2}}
$$

The constant of proportionality κ is called the torsion constant.

$$
\frac{d^{2} \theta}{d t^{2}}=-\frac{\kappa}{I} \theta=-\omega^{2} \theta
$$

$\omega=\sqrt{\frac{\kappa}{I}}$

Simple Harmonic Motion

\(\left.$$
\begin{array}{clll}\text { Springs } & \begin{array}{l}\text { Simple } \\
\text { Pendulum }\end{array} & \begin{array}{l}\text { Physical } \\
\text { Pendulum }\end{array} & \begin{array}{l}\text { Torsional } \\
\text { Pendulum }\end{array}
$$

\omega=\sqrt{\frac{k}{m}} \& \omega=\sqrt{\frac{g}{L}} \& \omega=\sqrt{\frac{m g d}{I}} \& \omega=\sqrt{\frac{\kappa}{I}}\end{array}\right\}\)| $T=2 \pi \sqrt{\frac{m}{k}}$ |
| :--- |
| $T_{S}=2 \pi \sqrt{\frac{m}{k}}$ |

Vertical Spring Amplitude Situation 1:

$$
\begin{gathered}
y^{2}+2 y \Delta y_{1}+\Delta y_{1}^{2}=y^{2}-2 y \Delta y_{2}+\Delta y_{2}^{2}+\frac{2 m g}{k}\left(\Delta y_{1}+\Delta y_{2}\right) \\
2 y \Delta y_{1}+\Delta y_{1}^{2}=-2 y \Delta y_{2}+\Delta y_{2}^{2}+\frac{2 m g}{k} \Delta y_{1}+\frac{2 m g}{k} \Delta y_{2} \\
2 \frac{m g}{k} \Delta y_{1}+\Delta y_{1}^{2}=-2 \frac{m g}{k} \Delta y_{2}+\Delta y_{2}^{2}+\frac{2 m g}{k} \Delta y_{1}+\frac{2 m g}{k} \Delta y_{2} \\
\Delta y_{1}^{2}=\Delta y_{2}^{2} \\
\Delta y_{1}=\Delta y_{2} \quad \text { and } A=\Delta y_{1} \\
\text { Periodic Motion }
\end{gathered}
$$

Vertical Spring Amplitude Situation 2:

$$
\begin{gathered}
m g \Delta y_{1}=\frac{1}{2} k \Delta y_{1}^{2} \\
\frac{2 m g}{k}=\Delta y_{1} \\
\Delta y_{1}=2 A \\
A=\frac{m g}{k}
\end{gathered}
$$

Vertical Spring Amplitude Situation 1:

$$
K_{1}+U_{e_{1}}+U_{g_{1}}=K_{2}+U_{e_{2}}+U_{g_{2}}
$$

$$
U_{e_{1}}=U_{e_{2}}+U_{g_{2}}
$$

$$
\frac{1}{2} k\left(y+\Delta y_{1}\right)^{2}=\frac{1}{2} k\left(y-\Delta y_{2}\right)^{2}+m g\left(\Delta y_{1}+\Delta y_{2}\right)
$$

Vertical Spring Amplitude Situation 2:

not stretched
and then
released
downward
displacement

$K_{1}+U y_{e_{1}}+U U_{g_{1}}=K_{2}+U_{e_{2}}+U_{g_{2}}$
$m g \Delta y_{1}=\frac{1}{2} k \Delta y_{1}^{2}$

Periodic Motion
16

Breakdown of Problems Test 7

General Periodic Motion (SHM) 13
Simple Pendulum 8

Spring 19
Gravity 27
Elliptical Orbits 8
Escape Velocity 3
Physical Pendulum 1
Torsional Pendulum 1

