Quantities with Units of Length (m)
1.) Position
2.) Displacement
3.) Distance

Displacement

Displacement $\left(x_{f}-x_{i}\right)$ is the change in position of an object. Displacement is a vector quantity because an object can move both negatively (backwards) and positively (forwards) with respect to its initial position.

1-D Motion Constant Velocity

Displacement

Distance

Distance is the total path length traversed in moving from one point to another. Distance is a scalar quantity and is always positive.

Distance versus Displacememt

$\underset{x_{\mathrm{f}}^{4}}{\substack{d_{2}=50 \mathrm{~m} \\ 30 \mathrm{~s}}}$
Distance is $d_{1}+d_{2}=100 \mathrm{~m}+50 \mathrm{~m}=150 \mathrm{~m}$ Displacement is $\Delta x=x_{f}-x_{i}=50 \mathrm{~m}-\mathbf{0}=\mathbf{5 0} \mathrm{m}$

Velocity (m/s)
The velocity (v) of an object is a measure of the relative motion of the object with respect to a reference point.

Velocity is a vector quantity.

Average Velocity (m/s)

The average velocity $\left(v_{a v}\right)$ is the displacement of an object, divided by the time interval during which the displacement occurs.

$$
v_{a v}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}=\frac{\Delta x}{\Delta t}
$$

Quantities with Units of Length per Time (m/s)
1.) Velocity
2.) Speed
3.) Average Velocity and Average Speed
4.) Instantaneous Velocity

1-D Motion Constant Velocity

Speed (m/s)

The speed of an object is the magnitude of its velocity.

Speed is a scalar quantity.

Average Speed (m/s)

The average speed is the distance an object travels, divided by the time interval.

$$
\begin{gathered}
\text { average } \text { speed }=\frac{\text { distance }}{\text { time }} \\
s=\frac{d}{\Delta t}
\end{gathered}
$$

Instantaneous Velocity (m / s)

The instantaneous velocity (v) is the velocity of an object at a specific instant of time.

$$
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}
$$

Position versus Time Profiles

The slope of the tangent to the curve at a particular instant of time of a position-time profile gives the instantaneous velocity.

slope $=\frac{\Delta x}{\Delta t}=v$
1-D Motion Constant Velocity

Position versus Time Profiles

The slope of a position-time profile gives the instantaneous velocity.

Instantaneous Velocity (m/s)

The instantaneous velocity can be found from a graph of position versus time. It is equal to the slope of the tangent to the curve at a particular instant of time.

Position versus Time Profiles

The slope of a position-time profile gives the instantaneous velocity.

Position versus Time Profiles

The slope of a position-time profile gives the instantaneous velocity.

Equation of Motion for Constant Velocity

The change in position of an object can also be described with the following equation:

$$
\begin{gathered}
v=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}} \text { or } \Delta x=v \Delta t \\
x_{f}-x_{i}=v\left(t_{f}-t_{i}\right) \\
x_{f}=v\left(t_{f}-t_{i}\right)+x_{i}
\end{gathered}
$$

Velocity versus Time Profiles

The area under a velocity-time graph gives the displacement during that time period.

