

1.) Write each of the vectors in Figure 1 in terms of unit vectors \hat{i} and \hat{j} and find the unit vector in the direction of each vector.

- 2.) Write each of the vectors in Figure 2 in terms of unit vectors \hat{i} and \hat{j} and find the unit vector in the direction of each vector.
- 3.) Write each of the vectors in Figure 3 in terms of unit vectors \hat{i} and \hat{j} and find the unit vector in the direction of each vector.
- 4.) Find the scalar product $\vec{A} \cdot \vec{B}$ of the two vectors in Figure 1 using the definition of a scalar product and by using their components.
- 5.) Find the scalar product $\overline{A} \cdot \overline{B}$ of the two vectors in Figure 2 using the definition of a scalar product and by using their components.
- 6.) Find the scalar product $\vec{A} \cdot \vec{B}$ of the two vectors in Figure 3 using the definition of a scalar product and by using their components.
- 7.) Find the vector product $\overline{A} \times \overline{B}$ of the two vectors in Figure 1 using the definition of a vector product and by using their components.
- 8.) Find the vector product $\vec{A} \times \vec{B}$ of the two vectors in Figure 2 using the definition of a vector product and by using their components.
- 9.) Find the vector product $\overline{A} \times \overline{B}$ of the two vectors in Figure 3 using the definition of a vector product and by using their components.
- 10.) Find the angle between the following pairs of vectors:
 - a.) $\vec{A} = -1.0\hat{i} + 6.0\hat{j}$ and $\vec{B} = 3.0\hat{i} 2.0\hat{j}$;
 - b.) $\vec{A} = 3.0\hat{i} + 5.0\hat{j}$ and $\vec{B} = 10\hat{i} + 6.0\hat{j}$
 - c.) $\vec{A} = -4.0\hat{i} + 2.0\hat{j}$ and $\vec{B} = 7.0\hat{i} 14\hat{j}$