\qquad
\qquad
\qquad
AP Physics C Vector HO 25.2

Figure 1

Figure 2

Figure 3
1.) Write each of the vectors in Figure 1 in terms of unit vectors \hat{i} and \hat{j} and find the unit vector in the direction of each vector.
2.) Write each of the vectors in Figure 2 in terms of unit vectors \hat{i} and \hat{j} and find the unit vector in the direction of each vector..
3.) Write each of the vectors in Figure 3 in terms of unit vectors \hat{i} and \hat{j} and find the unit vector in the direction of each vector..
4.) Find the scalar product $\vec{A} \cdot \vec{B}$ of the two vectors in Figure 1 using the definition of a scalar product and by using their components .
5.) Find the scalar product $\vec{A} \cdot \vec{B}$ of the two vectors in Figure 2 using the definition of a scalar product and by using their components .
6.) Find the scalar product $\vec{A} \cdot \vec{B}$ of the two vectors in Figure 3 using the definition of a scalar product and by using their components .
7.) Find the vector product $\vec{A} \times \vec{B}$ of the two vectors in Figure 1 using the definition of a vector product and by using their components .
8.) Find the vector product $\vec{A} \times \vec{B}$ of the two vectors in Figure 2 using the definition of a vector product and by using their components.
9.) Find the vector product $\vec{A} \times \vec{B}$ of the two vectors in Figure 3 using the definition of a vector product and by using their components .
10.) Find the angle between the following pairs of vectors:
a.) $\vec{A}=-1.0 \hat{i}+6.0 \hat{j}$ and $\vec{B}=3.0 \hat{i}-2.0 \hat{j}$;
b.) $\vec{A}=3.0 \hat{i}+5.0 \hat{j}$ and $\vec{B}=10 \hat{i}+6.0 \hat{j}$
c.) $\vec{A}=-4.0 \hat{i}+2.0 \hat{j}$ and $\vec{B}=7.0 \hat{i}-14 \hat{j}$

