Vector Components

Unit Vector Notation

Vector Basics

Vector Basics

1

3

5

Unit Vectors are vectors having unit length.

If \overline{A} is any vector with length A > 0, then \overline{A}/A is a unit vector, denoted by \hat{a} , having the same direction as \overline{A} . Then $\overline{A} = A\hat{a}$.

The rectangular unit vectors \hat{i} , \hat{j} , and \hat{k} are unit vectors having the direction of the positive x, y, and z axes of a rectangular coordinate system.

Vector Basics

Dot or Scalar Product

The dot or scalar product of two vectors \overline{A} and \overline{B} , denoted by $\overline{A} \cdot \overline{B}$ is defined as the product of the magnitudes of \overline{A} and \overline{B} and the cosine of the angle between them (when placed tail - to - tail).

 $\bar{A} \cdot \bar{B} = AB\cos\theta \qquad 0 \le \theta \le \pi$

Note that $\vec{A} \cdot \vec{B}$ is a scalar and not a vector.

Vector Basics

Unit Vector Notation

If a two - dimensinal vector \vec{A} has components A_x and A_y , then the vector \vec{A} can be written in unit vector notation as :

 $\bar{A} = A_{x}\hat{i} + A_{x}\hat{j}$

The unit vector pointing in the same direction as \overline{A} is :

 $\hat{a} = \frac{\bar{A}}{A} = \frac{A_x\hat{i} + A_y\hat{j}}{\sqrt{A_x^2 + A_y^2}}$

Vector Basics

4

6

Dot or Scalar Product

The following laws are valid :

1.) $\overline{A} \cdot \overline{B} = \overline{B} \cdot \overline{A}$ 2.) $\overline{A} \cdot (\overline{B} + C) = \overline{A} \cdot \overline{B} + \overline{A} \cdot C$ 3.) $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$ 4.) $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$ 5.) If $\overline{A} = A_x \hat{i} + A_y \hat{j}$ and $\overline{B} = B_x \hat{i} + B_y \hat{j}$, then $\overline{A} \cdot \overline{B} = A_x B_x + A_y B_y$ $\overline{A} \cdot \overline{A} = A^2 = A_x^2 + A_y^2$ 6.) If $\overline{A} \cdot \overline{B} = 0$ and \overline{A} and \overline{B} are not null vectors, then

 $ar{A}$ and $ar{B}$ are perpendicular.

Vector Basics

Cross or Vector Product

The cross or vector product of \overline{A} and \overline{B} is a vector $C = \overline{A} \times \overline{B}$. The magnitude of $\overline{A} \times \overline{B}$ is defined as the product of the magnitudes of \overline{A} and \overline{B} and the sine of angle between them. The direction of the vector $C = \overline{A} \times \overline{B}$ is perpendicular to the plane of \overline{A} and \overline{B} and such that \overline{A} , \overline{B} , and C form a right - handed system.

$\vec{A} \times \vec{B} = AB\sin\theta \,\hat{u} \qquad 0 \le \theta \le \pi$

where \hat{u} is a unit vector indicating the direction of $\vec{A} \times \vec{B}$.

Vector Basics

Cross or Vector Product The following laws are valid : 1.) $\overline{A} \times \overline{B} = -\overline{B} \times \overline{A}$ 2.) $\overline{A} \times (\overline{B} + \overline{C}) = \overline{A} \times \overline{B} + \overline{A} \times \overline{C}$ 3.) $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$ 4.) $\hat{i} \times \hat{j} = \hat{k}, \quad \hat{j} \times \hat{k} = \hat{i}, \quad \hat{k} \times \hat{i} = \hat{j}$ 5.) If $\overline{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$ and $\overline{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$, then $\overline{A} \times \overline{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \end{vmatrix} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ B_x & B_y & B_z \end{vmatrix}$ 6.) If $\overline{A} \times \overline{B} = 0$ and \overline{A} and \overline{B} are not null vectors, then

 \overline{A} and \overline{B} are parallel.

- Example 1 If $\overline{A} = 10 \angle 36.87^{\circ}$ and $\overline{B} = 14.142 \angle 135^{\circ}$ find : a.) \overline{A} and \overline{B} in unit vector notation
 - **b.**) \hat{a} and \hat{b} (unit vectors)
 - c.) $\vec{A} \cdot \vec{B}$
 - d.) the angle between \vec{A} and \vec{B}
 - e.) $\vec{A} \times \vec{B}$ and $\vec{B} \times \vec{A}$ Vector Basics

Example 1 If $\overline{A} = 10 \angle 36.87^{\circ}$ and $\overline{B} = 14.142 \angle 135^{\circ}$ find : a.) \overline{A} and \overline{B} in unit vector notation $\overline{A} = A_x \hat{i} + A_y \hat{j} = A \cos \theta_A \hat{i} + A \sin \theta_A \hat{j}$ $= (10\cos 36.87^{\circ})\hat{i} + (10\sin 36.87^{\circ})\hat{j}$ $\overline{A} = 8\hat{i} + 6\hat{j}$ $\overline{B} = B_x \hat{i} + B_y \hat{j} = B \cos \theta_B \hat{i} + B \sin \theta_B \hat{j}$ $= (14.142\cos 135^{\circ})\hat{i} + (14.142\sin 135^{\circ})\hat{j}$ $\overline{B} = -10\hat{i} + 10\hat{j}$

10

Example 1

If $\bar{A} = 10 \angle 36.87^{\circ}$ and $\bar{B} = 14.142 \angle 135^{\circ}$ find :

b.) \hat{a} and \hat{b} (unit vectors)

$$\hat{a} = \frac{\bar{A}}{A} = \frac{8\hat{i} + 6\hat{j}}{10} \qquad \hat{b} = \frac{B}{B} = \frac{-10\hat{i} + 10\hat{j}}{14.142}$$
$$\hat{a} = 0.8\hat{i} + 0.6\hat{j} \qquad \hat{b} = -0.7071\hat{i} + 0.7071\hat{j}$$

If
$$\overline{A} = 10 \angle 36.87^{\circ}$$
 and $\overline{B} = 14.142 \angle 135^{\circ}$ find :
c.) $\overline{A} \cdot \overline{B}$
 $\overline{A} \cdot \overline{B} = (A_x \hat{i} + A_y \hat{j}) \cdot (B_x \hat{i} + B_y \hat{j})$
 $= (A_x \hat{i}) \cdot (B_x \hat{i}) + (A_x \hat{i}) \cdot (B_y \hat{j}) + (A_y \hat{j}) \cdot (B_x \hat{i}) + (A_y \hat{j}) \cdot (B_y \hat{j})$
 $= A_x B_x (\hat{i} \cdot \hat{i}) + A_x B_y (\hat{i} \cdot \hat{j}) + A_y B_x (\hat{j} \cdot \hat{i}) + A_y B_y (\hat{j} \cdot \hat{j})$
 $= A_x B_x (1) + A_x B_y (0) + A_y B_x (0) + A_y B_y (1)$
 $= A_x B_x + A_y B_y = (8)(-10) + (6)(10) = -20$

Example 1

7

9

Example 1

If $\overline{A} = 10 \angle 36.87^{\circ}$ and $\overline{B} = 14.142 \angle 135^{\circ}$ find : d.) the angle between \overline{A} and \overline{B}

$$\overline{A} \cdot \overline{B} = AB\cos\theta$$
$$\theta = \cos^{-1}\left(\frac{\overline{A} \cdot \overline{B}}{AB}\right) = \cos^{-1}\left(\frac{-20}{(10)(14.142)}\right)$$
$$\theta = 98.13^{\circ}$$

Example 1

Example 1

If $\overline{A} = 10 \angle 36.87^{\circ}$ and $\overline{B} = 14.142 \angle 135^{\circ}$ find : c.) $\overline{A} \cdot \overline{B}$ $z \xrightarrow{y}$ $\overline{A} \cdot \overline{B} = AB\cos\theta = (10)(14.142)\cos(98.13^{\circ})$

14

Example 1

If $\bar{A} = 10 \angle 36.87^{\circ}$ and $\bar{B} = 14.142 \angle 135^{\circ}$ find : e.) $\bar{A} \times \bar{B}$ $\bar{A} \times \bar{B} = (A_x \hat{i} + A_y \hat{j}) \times (B_x \hat{i} + B_y \hat{j})$ $= (A_x \hat{i}) \times (B_x \hat{i}) + (A_x \hat{i}) \times (B_y \hat{j}) + (A_y \hat{j}) \times (B_x \hat{i}) + (A_y \hat{j}) \times (B_y \hat{j})$ $= A_x B_x (\hat{i} \times \hat{i}) + A_x B_y (\hat{i} \times \hat{j}) + A_y B_x (\hat{j} \times \hat{i}) + A_y B_y (\hat{j} \times \hat{j})$ $= A_x B_x (0) + A_x B_y (\hat{k}) + A_y B_x (-\hat{k}) + A_y B_y (0)$ $= (A_x B_y - A_y B_x) \hat{k} = ((8)(10) - (6)(-10)) \hat{k} = 140 \hat{k}$ 15

If
$$\bar{A} = 10 \angle 36.87^{\circ}$$
 and $\bar{B} = 14.142 \angle 135^{\circ}$ find :
e.) $\bar{B} \times \bar{A}$
 $\bar{B} \times \bar{A} = (B_x \hat{i} + B_y \hat{j}) \times (A_x \hat{i} + A_y \hat{j})$
 $= (B_x \hat{i}) \times (A_x \hat{i}) + (B_x \hat{i}) \times (A_y \hat{j}) + (B_y \hat{j}) \times (A_x \hat{i}) + (B_y \hat{j}) \times (A_y \hat{j})$
 $= B_x A_x (\hat{i} \times \hat{i}) + B_x A_y (\hat{i} \times \hat{j}) + B_y A_x (\hat{j} \times \hat{i}) + B_y A_y (\hat{j} \times \hat{j})$
 $= B_x A_x (0) + B_x A_y (\hat{k}) + B_y A_x (-\hat{k}) + B_y A_y (0)$
 $= (B_x A_y - B_y A_x) \hat{k} = ((-10)(6) - (10)(8)) \hat{k} = -140 \hat{k}$

Example 1

If $\overline{A} = 10 \angle 36.87^{\circ}$ and $\overline{B} = 14.142 \angle 135^{\circ}$ find : e.) $\overline{A} \times \overline{B}$ $z \longrightarrow x$ $|\overline{A} \times \overline{B}| = AB\sin\theta = (10)(14.142)\sin(98.1^{\circ})$ $|\overline{A} \times \overline{B}| = 140$

13