AP Physics 1
 Electrostatics Practice Problems

1.) Two electrical charges, q_{1} and q_{2}, are separated by a distance r and exert a force F on each other. What will be the new force if
a.) $\quad q_{1}$ is doubled?
b.) $\quad q_{1}$ and q_{2} are cut in half?
c.) $\quad r$ is tripled?
d.) $\quad r$ is cut in half?
2.) How many excess electrons are on a ball with a charge of $-4.00 \times 10^{-17} \mathrm{C}$?
3.) Two electrons in an atom are separated by $1.5 \times 10^{-10} \mathrm{~m}$. What is the force between them?
4.) A positive and a negative charge, each of magnitude $1.5 \times 10^{-5} \mathrm{C}$, are separated by a distance of 15 cm . Find the force on each of the particles.
5.) Two negative charges of $-3.0 \times 10^{-6} \mathrm{C}$ exert a repulsive force of 2.0 N on each other. By what distance are they separated?
6.) Two identical positive charges exert a repulsive force of $6.4 \times 10^{-9} \mathrm{~N}$ when separated by a distance of $3.8 \times 10^{-10} \mathrm{~m}$. Calculate the charge of each.
7.) A positive charge of $3.0 \times 10^{-6} \mathrm{C}$ is pulled on by two negative charges. One, $-2.0 \times 10^{-6} \mathrm{C}$, is 0.050 m north and the other, $-4.0 \times 10^{-6} \mathrm{C}$, is 0.030 m to the south. What total force is exerted on the positive charge?
8.) Three particles are placed on a line. The left particle has a charge of $-67 \times 10^{-6} \mathrm{C}$, the middle. $+45 \times 10^{-6} \mathrm{C}$, and the right, $-83 \times 10^{-6} \mathrm{C}$. The middle particle is 72 cm from each of the others.
a.) Find the net force on the middle particle.
b.) Find the net force on the right particle.

9.) Two identical conducting spheres are charged to $+4 Q$ and $-2 Q$, respectively, and are separated by a distance d (much greater than the radii of the spheres) as shown above. The magnitude of the force of attraction on the left sphere is F_{1}. After the spheres are made to touch and then are reseparated by distance d, what is the magnitude of the new force F_{2} in terms of F_{1} ?

