AP Physics 1

Force Practice Problems Test 4

1.) Two forces act upon an object with a mass of 25 kg which is on a smooth flat surface. The first force has a magnitude of 120 N and is directed towards the east. The second force has a magnitude of 70 N and is directed towards the west.
a.) Draw a force diagram for this situation.
b.) Write net force equations for the force diagram.
c.) Find the acceleration of the object..

2.) Trouble has a mass of 6.5 kg .
a.) What is her weight on Earth?
b.) What is her weight on Mars, where the acceleration due to gravity is $3.8 \mathrm{~m} / \mathrm{s}^{2}$?
3.) The acceleration due to gravity on the moon is $1.62 \mathrm{~m} / \mathrm{s}^{2}$. If a person weighs 735 N on earth, what will the person's weight be on the moon?
4.)

Two masses are suspended from the ceiling with pieces of cord of negligible mass.
a.) On the figures below show all forces acting on m_{1} and m_{2}.

b.) Write net force equations for each mass.
c.) If $m_{1}=5.0 \mathrm{~kg}$ and $m_{2}=8.0 \mathrm{~kg}$, find the tensions in the cords.
5.)

Three objects are hanging from the ceiling with pieces of cord of negligible mass. The tension in the top cord is 294 N .
a.) On the figures below show all forces acting on m_{1}, m_{2}, and m_{3}.

b.) Write net force equations for each object.
c.) Find the tensions T_{2} and T_{3}, and the mass m_{2}.
6.) Rat stands on a scale in an elevator at rest on the 13 th floor of a downtown Austin building. The scale reads 54.0 N .
a.) What is Rat's mass?
b.) On the figure below show all forces acting on Rat.
c.) Write net force equation(s) if the elevator is accelerating upward.

```
m
```

d.) As the elevator moves up, the scale reading increases to 60.0 N , then decreases back to 54.0 N . Find the acceleration of the elevator.
f.) What does the scale read if the elevator is accelerating upward at $3.0 \mathrm{~m} / \mathrm{s}^{2}$?
e.) As the elevator approaches the 22nd floor, the scale reading drops as low as 43.0 N . What is the acceleration of the elevator?
g.) What does the scale read if the elevator is accelerating downward at $2.5 \mathrm{~m} / \mathrm{s}^{2}$?
h.) Before Rat gets out of the elevator the cable breaks (Rat is still on the scale) and the elevator begins to fall freely. What does the scale read during the free fall of the elevator?
7.) A sled of mass 50 kg is pulled with a force horizontal to the ground along snow covered, flat ground. The static friction coefficient is 0.30 , and the kinetic friction coefficient is 0.10 .
a.) On the figure below show all of the forces acting on the sled.
b.) Write net force equations for the sled.
m
c.) What force is needed to start the sled moving?
d.) What force is needed to keep the sled moving at a constant velocity of $2.0 \mathrm{~m} / \mathrm{s}$?
e.) Once moving, what total force must be applied to the sled to accelerate it $3.0 \mathrm{~m} / \mathrm{s}^{2}$
8.) A horizontal force of 40 N accelerates a 5.0 kg block at $6.0 \mathrm{~m} / \mathrm{s}^{2}$ along a horizontal surface.
a.) On the figure below show all of the forces
b.) Write net force equations for the block. acting on the block.

c.) How large is the frictional force?
d.) What is the coefficient of kinetic friction?
ey
\square
9.) Rat uses a horizontal force of 30.0 N to slide a 12.0 kg wooden crate across the floor.
a.) On the figure below show all of the forces acting on the crate.
b.) Write net force equations for the block.

c.) How large is the frictional force if the crate moves with a constant velocity of $1.2 \mathrm{~m} / \mathrm{s}$?
d.) What is the acceleration of the crate if Rat increases her force to 48 N?

For Problems 10 through 12 refer to figure below;

$$
\begin{aligned}
& m_{1}=8.0 \mathrm{~kg} \\
& m_{2}=4.0 \mathrm{~kg}
\end{aligned}
$$

10.) A 48 N force is applied to two boxes that are connected by a cord of negligible mass. The blocks are sliding on a frictionless surface.
a.) On the figures below show all of the forces acting on each box.
b.) Write net force equations for each box.

c.) Find the acceleration of each box and the tension T in the cord connecting the two boxes.
11.) The coefficient kinetic friction between the boxes and the floor is 0.25 and a force of 48 N is applied to the 8.0 kg mass.
a.) On the figures below show all of the forces acting on each box.
b.) Write net force equations for each box.

c.) Find the acceleration of each box and the tension T in the cord connecting the two boxes.
12.) If the coefficient static friction between the boxes and the floor is 0.35 . What is the minimum force F required to just cause the boxes to move?

In the figure to the left, $m_{1}=15 \mathrm{~kg}$ and $m_{2}=10 \mathrm{~kg}$. Assume that the pulley and cord have negligible mass and all surfaces are frictionless.
a.) Draw force diagrams for m_{1} and m_{2}.
b.) Write net force equations for both masses.
c.) Find the acceleration of the system and the tension T in the cord.

In the figure to the left, $m_{1}=35 \mathrm{~kg}$ and $m_{2}=25 \mathrm{~kg}$. Assume that the pulley and cord have negligible mass and the coefficient of kinetic friction between the surface and m_{1} is 0.25 .
a.) Draw force diagrams for m_{1} and m_{2}.
b.) Write net force equations for both masses.
c.) Find the acceleration of the system and the tension T in the cord.

In the figure to the left $m_{1}=35 \mathrm{~kg}$ and $m_{2}=25 \mathrm{~kg}$. The coefficient of kinetic friction is 0.15 between m_{1} and the surface. A force $F=600 \mathrm{~N}$ is applied to m_{1} causing it to accelerate to the left.
a.) Draw force diagrams for m_{1} and m_{2}.
b.) Write net force equations for both masses.

Two blocks are accelerated across a rough horizontal surface by a force applied to one of the blocks as shown in the figure to the left. The coefficient of static friction is 0.30 and the coefficient of kinetic friction is 0.20 between the blocks and the surface. $m_{1}=5.0 \mathrm{~kg}$ and $m_{2}=8.0 \mathrm{~kg}$. A force $F=80 \mathrm{~N}$ is being applied to the smaller block.
a.) Draw force diagrams for both blocks.
b.) Write net force equations for both masses.

c.) What is the acceleration of the blocks and the force exerted on the larger block by the smaller block?

