\qquad
1.) If the distance between two point particles is doubled, what happens to the gravitational force between them.
2.) At the surface of the earth, an object of mass m has weight w. Find its new mass and weight if this object is transported to an altitude that twice the radius of the earth.
3.) A moon of mass m orbits a planet of mass $100 m$. Let the strength of the gravitational force exerted by the planet on the moon be denoted by F_{1}, and let the strength of the gravitational force exerted by the moon on the planet be F_{2}. What is the relationship between these two forces?
4.) The planet Pluto has $1 / 500$ the mass and $1 / 15$ the radius of the Earth. What is the value of g on the surface of Pluto?
5.) A satellite is currently orbiting Earth in a circular orbit of radius R, its kinetic energy is K_{1}. If the satellite is moved and enters a new circular orbit of radius $2 R$, what will be its kinetic energy?
6.) A moon of Jupiter has a nearly circular orbit of radius R and an orbit period of T. Find an expression for the mass of Jupiter.
7.) The mean distance from the Saturn to the Sun is 9 times greater than the mean distance from Earth to the Sun. How long is a Saturn year in terms of Earth years?
8.) Two uniform spheres, each of mass M and radius R, touch each other. What is the magnitude of their gravitational force of attraction? (UP 12-2)
9.) The Moon has a mass M and radius R. A small object is dropped from a distance of $3 R$ from the Moon's center. What is the object's impact speed when it strikes the surface of the Moon?
10.) A newly discovered planet "Cosmo", has a mass that is 6 times the mass of the Earth. The radius of Earth is R_{E}. Find the radius of Cosmo (in terms of R_{E}) so that the gravitational field strength at the surface of Cosmo is equal to that at the surface of the Earth.
11.) A satellite of mass m is in the elliptical orbit shown below around Earth (radius r_{E}. mass M). Assume that $m \ll M$.

a.) Determine v_{1}, the speed of the satellite at perigee (the point of the orbit closest to Earth). Write your answer in terms of r_{1}, r_{2}, M, and G.
b.) Determine v_{2}, the speed of the satellite at apogee (the point of the orbit farthest from Earth). Write your answer in terms of r_{1}, r_{2}, M, and G.
c.) Express the ratio v_{1} / v_{2} in simplest terms.
d.) What is the satellite's angular momentum (with respect to Earth's center) when it is at apogee?
e.) Determine the speed of the satellite when it is at the point marked X in the figure.
f.) Determine the period of the satellite's orbit. Write your answer in terms of r_{1}, r_{2}, M, and fundamental constants.
g.) What is the eccentricity of the satellite's orbit? Express your answer in terms of r_{1} and r_{2}.
12.) The radius of the Earth is approximately 6000 km . What is the acceleration of an astronaut in a perfectly circular orbit 300 km above the surface of the Earth?
13.)

Two identical stars, a fixed distance D apart, revolve in a circle about their mutual center of mass. Each star has a mass M and speed $v . G$ is the universal gravitational constant. Determine an expression for v in terms of the other quantities.
14.) The mass of Planet X is one-sixth that of the Earth, and its diameter is one-third that of the Earth. Find the acceleration due to gravity at the surface of Planet X.

