1.) $C=500 \mathrm{pF}$
$Q=0.326 \mu \mathrm{C}$

$$
d=0.453 \mathrm{~mm}
$$

a.) $\quad C=\frac{Q}{\Delta V}$ so $\quad \Delta V=\frac{Q}{C}=\frac{0.346 \times 10^{-6} \mathrm{C}}{500 \times 10^{-12} \mathrm{~F}}=692 \mathrm{~V}$
b.) $C=\frac{\varepsilon_{\mathrm{o}} A}{d}$ so $A=\frac{C d}{\varepsilon_{\mathrm{o}}}=\frac{\left(500 \times 10^{-12} \mathrm{~F}\right)\left(0.453 \times 10^{-3} \mathrm{~m}\right)}{\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)}$

$$
A=0.026 \mathrm{~m}^{2}
$$

Check units:

$$
A[=] \frac{(\mathrm{F})(\mathrm{m})}{\left(\frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)}=[=] \frac{\left(\frac{\mathrm{C}}{\mathrm{~V}}\right)(\mathrm{m})}{\left(\frac{\mathrm{C}^{2}}{\mathrm{~J} \cdot \mathrm{~m}}\right)}[=] \frac{\left(\frac{\mathrm{C}}{\mathrm{~V}}\right)(\mathrm{m})}{\left(\frac{\mathrm{C}}{\mathrm{~V} \cdot \mathrm{~m}}\right)}[=] \mathrm{m}^{2}
$$

c.) $E=\frac{\Delta V}{d}=\frac{692 \mathrm{~V}}{0.453 \times 10^{-3} \mathrm{~m}}=1.53 \times 10^{6} \frac{\mathrm{~V}}{\mathrm{~m}}$
d.) $\sigma=\frac{Q}{A}=\frac{0.346 \times 10^{-6} \mathrm{C}}{0.026 \mathrm{~m}^{2}}=13.3 \times 10^{-6} \frac{\mathrm{C}}{\mathrm{m}^{2}}$
2.) a.)

Between the spheres: $\quad E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$ (using Gauss's Law)

$$
V_{o}-V_{i}=-\int_{r_{i}}^{r_{o}} \vec{E} \cdot \overrightarrow{d \ell}=-\int_{r_{i}}^{r_{o}} \frac{Q}{4 \pi \varepsilon_{0} r^{2}} d r=\left.\frac{Q}{4 \pi \varepsilon_{0} r}\right|_{r_{i}} ^{r_{o}}
$$

$C=150 \mathrm{pF}$ $r_{i}=0.20 \mathrm{~m}$

$$
\begin{aligned}
& V_{o}-V_{i}=\frac{Q}{4 \pi \varepsilon_{\mathrm{o}}}\left(\frac{1}{r_{o}}-\frac{1}{r_{i}}\right) \\
& \frac{1}{C}=\frac{V_{i}-V_{o}}{Q}=\frac{1}{4 \pi \varepsilon_{\mathrm{o}}}\left(\frac{1}{r_{i}}-\frac{1}{r_{o}}\right) \\
& \frac{1}{r_{o}}=\frac{1}{r_{i}}-\frac{4 \pi \varepsilon_{0}}{C} \text { so } \frac{1}{r_{o}}=\frac{C-4 \pi \varepsilon_{0} r_{i}}{C r_{i}} \\
& r_{o}=\frac{C r_{i}}{C-4 \pi \varepsilon_{0} r_{i}}=\frac{\left(150 \times 10^{-12} \mathrm{~F}\right)(0.20 \mathrm{~m})}{\left(150 \times 10^{-12} \mathrm{~F}\right)-4 \pi\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)(0.20 \mathrm{~m})}=0.235 \mathrm{~m} \\
& r_{o}-r_{i}=0.235 \mathrm{~m}-0.20 \mathrm{~m}=0.035 \mathrm{~m}
\end{aligned}
$$

2.)
b.)

$$
Q=C \Delta V=\left(150 \times 10^{-12} \mathrm{~F}\right)(220 \mathrm{~V})=3.3 \times 10^{-8} \mathrm{C}
$$

c.)
inside: $\quad A_{i}=4 \pi r_{i}^{2} \quad$ and $\quad \sigma_{i}=\frac{Q}{A_{i}}=\frac{\left(3.3 \times 10^{-8} \mathrm{C}\right)}{4 \pi(0.20 \mathrm{~m})^{2}}=6.57 \times 10^{-8} \frac{\mathrm{C}}{\mathrm{m}^{2}}$
outside: $A_{o}=4 \pi r_{o}^{2} \quad$ and $\quad \sigma_{o}=\frac{Q}{A_{o}}=\frac{\left(-3.3 \times 10^{-8} \mathrm{C}\right)}{4 \pi(0.235 \mathrm{~m})^{2}}=-4.76 \times 10^{-8} \frac{\mathrm{C}}{\mathrm{m}^{2}}$
3.)
$\Delta V=140 \mathrm{~V}, r_{i}=12 \mathrm{~cm}, r_{o}=15 \mathrm{~cm}$
a.)

From problem 2: $\quad \frac{1}{C}=\frac{V_{i}-V_{o}}{Q}=\frac{1}{4 \pi \varepsilon_{\mathrm{o}}}\left(\frac{1}{r_{i}}-\frac{1}{r_{o}}\right) \quad$ so $\quad \frac{1}{C}=\frac{1}{4 \pi \varepsilon_{\mathrm{o}}}\left(\frac{r_{o}-r_{i}}{r_{i} r_{o}}\right)$

$$
C=4 \pi \varepsilon_{\mathrm{o}}\left(\frac{r_{i} r_{o}}{r_{o}-r_{i}}\right)=4 \pi\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right) \frac{(0.15 \mathrm{~m})(0.12 \mathrm{~m})}{(0.15 \mathrm{~m})-(0.12 \mathrm{~m})}=66.7 \mathrm{pF}
$$

b.)

$$
Q=C \Delta V=\left(66.7 \times 10^{-12} \mathrm{~F}\right)(140 \mathrm{~V})=9.34 \times 10^{-9} \mathrm{C} \text { and } \quad E=\frac{Q}{4 \pi \varepsilon_{\mathrm{o}} r^{2}} \text { (from Gauss's Law) }
$$

$$
\begin{aligned}
& E=\frac{\left(9.34 \times 10^{-9} \mathrm{C}\right)}{4 \pi\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)(0.121 \mathrm{~m})^{2}}=5734 \frac{\mathrm{~N}}{\mathrm{C}} \\
& E=\frac{\left(9.34 \times 10^{-9} \mathrm{C}\right)}{4 \pi\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)(0.149 \mathrm{~m})^{2}}=3781 \frac{\mathrm{~N}}{\mathrm{C}}
\end{aligned}
$$

c.)
4.)

a.) $\quad E=\frac{\lambda}{2 \pi \varepsilon_{0} r}$ (using Gauss's Law)

$$
\begin{aligned}
& \left.V_{o}-V_{i}=-\int_{r_{i}}^{r_{o}} \vec{E} \cdot \overrightarrow{d \ell}=-\int_{r_{i}}^{r_{o}} \frac{\lambda}{2 \pi \varepsilon_{0} r} d r=-\frac{\lambda}{2 \pi \varepsilon_{0}} \ln (r)\right]_{r_{i}}^{r_{o}} \\
& V_{o}-V_{i}=\frac{\lambda_{i}}{2 \pi \varepsilon_{0}}\left(\ln \left(r_{i}\right)-\ln \left(r_{o}\right)\right)=\frac{\lambda_{i}}{2 \pi \varepsilon_{0}} \ln \left(\frac{r_{i}}{r_{o}}\right)
\end{aligned}
$$

$$
\lambda_{i}=\frac{2 \pi \varepsilon_{o}\left(V_{o}-V_{i}\right)}{\ln \left(\frac{r_{i}}{r_{o}}\right)}=\frac{2 \pi\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)(0.35 \mathrm{~V}-0)}{\ln \left(\frac{2.5 \mathrm{~mm}}{4.0 \mathrm{~mm}}\right)}=-4.14 \times 10^{-11} \frac{\mathrm{C}}{\mathrm{~m}}
$$

$$
Q_{i}=\lambda_{i} L=\left(-4.14 \times 10^{-11} \frac{\mathrm{C}}{\mathrm{~m}}\right)(3.5 \mathrm{~m})=-1.45 \times 10^{-10} \mathrm{C}
$$

HO 34 Solutions

$$
\begin{aligned}
Q_{i} & =-1.45 \times 10^{-10} \mathrm{C} \\
Q_{o} & =1.45 \times 10^{-10} \mathrm{C}
\end{aligned}
$$

b.)

$$
\begin{aligned}
& V_{o}-V_{i}=\frac{\lambda}{2 \pi \varepsilon_{0}}\left(\ln \left(r_{o}\right)-\ln \left(r_{i}\right)\right)=\frac{\lambda}{2 \pi \varepsilon_{0}} \ln \left(\frac{r_{o}}{r_{i}}\right) \\
& V_{o}-V_{i}=\frac{Q_{i}}{2 \pi \varepsilon_{0} L} \ln \left(\frac{r_{o}}{r_{i}}\right) \text { so } \frac{C}{L}=\frac{Q_{i}}{\left(V_{o}-V_{i}\right) L}=\frac{2 \pi \varepsilon_{0}}{\ln \left(\frac{r_{o}}{r_{i}}\right)} \\
& \frac{C}{L}=\frac{2 \pi\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)}{\ln \left(\frac{4.0 \mathrm{~mm}}{2.5 \mathrm{~mm}}\right)}=1.18 \times 10^{-10} \frac{\mathrm{~F}}{\mathrm{~m}}
\end{aligned}
$$

5.)

$$
\begin{aligned}
& d=0.58 \mathrm{~cm} \\
& A=(0.18 \mathrm{~m})^{2}=0.0324 \mathrm{~m}^{2} \\
& V_{+}-V_{-}=50 \mathrm{~V}
\end{aligned}
$$

a.)

$$
C=\frac{\varepsilon_{\mathrm{o}} A}{d}=\frac{\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)\left(0.0324 \mathrm{~m}^{2}\right)}{\left(0.58 \times 10^{-2} \mathrm{~m}\right)}=49.4 \mathrm{pF}
$$

Check units:

$$
C[=] \frac{\left(\frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)\left(0.0324 \mathrm{~m}^{2}\right)}{\left(0.58 \times 10^{-2} \mathrm{~m}\right)}[=] \frac{\left(\frac{\mathrm{C}^{2}}{\mathrm{~N}}\right)}{(\mathrm{m})}[=] \frac{\left(\frac{\mathrm{m} \cdot \mathrm{C}}{\mathrm{~V}}\right)}{(\mathrm{m})}[=] \frac{\mathrm{C}}{\mathrm{~V}}[=] \mathrm{F}
$$

b.)

$$
C=\frac{Q}{\Delta V} \quad \text { so } \quad Q=C \Delta V=\left(49.4 \times 10^{-12} \mathrm{~F}\right)(50 \mathrm{~V})=2.47 \times 10^{-9} \mathrm{C}
$$

c.)

$$
\text { for uniform } E \text {-fields } \quad V_{+-}=E \cdot d \quad \text { so } \quad E=\frac{\Delta V}{d}=\frac{(50 \mathrm{~V})}{\left(0.58 \times 10^{-2} \mathrm{~m}\right)}=8.62 \times 10^{3} \frac{\mathrm{~V}}{\mathrm{~m}}
$$

d.)

$$
U_{C}=\frac{1}{2} Q \Delta V=\frac{1}{2}\left(2.47 \times 10^{-9} \mathrm{C}\right)(50 \mathrm{~V})=6.18 \times 10^{-8} \mathrm{~J}
$$

Check units:
$U_{C}[=] \mathrm{C} \cdot \Delta \mathrm{V}[=] \mathrm{C} \cdot \frac{\mathrm{J}}{\mathrm{C}}[=] \mathrm{J}$
5.)
e.) When battery is disconnected the charge cannot change so when $d=1.16 \mathrm{~cm}$:

$$
\begin{aligned}
& Q=2.47 \times 10^{-9} \mathrm{C} \\
& C=\frac{\varepsilon_{0} A}{d}=\frac{\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)\left(0.0324 \mathrm{~m}^{2}\right)}{\left(1.16 \times 10^{-2} \mathrm{~m}\right)}=24.7 \mathrm{pF} \\
& C=\frac{Q}{\Delta V} \quad \text { so } \quad \Delta V=\frac{Q}{C}=\frac{\left(2.47 \times 10^{-9} \mathrm{C}\right)}{\left(24.7 \times 10^{-12} \mathrm{~F}\right)}=100 \mathrm{~V} \\
& E=\frac{\Delta V}{d}=\frac{(100 \mathrm{~V})}{\left(1.16 \times 10^{-2} \mathrm{~m}\right)}=8.62 \times 10^{3} \frac{\mathrm{~V}}{\mathrm{~m}} \\
& U_{C}=\frac{1}{2} Q \Delta V=\frac{1}{2}\left(2.47 \times 10^{-9} \mathrm{C}\right)(100 \mathrm{~V})=1.24 \times 10^{-7} \mathrm{~J}
\end{aligned}
$$

6.) When battery remains connected voltage is fixed and the charge can change so when $d=1.16 \mathrm{~cm}$:
a.) as in (5e):

$$
C=24.7 \mathrm{pF}
$$

b.)

$$
Q=C \Delta V=\left(24.7 \times 10^{-12} \mathrm{~F}\right)(50 \mathrm{~V})=1.235 \times 10^{-9} \mathrm{C}
$$

c.)

$$
E=\frac{\Delta V}{d}=\frac{(50 \mathrm{~V})}{\left(1.16 \times 10^{-2} \mathrm{~m}\right)}=4.31 \times 10^{3} \frac{\mathrm{~V}}{\mathrm{~m}}
$$

d.)
$U_{C}=\frac{1}{2} Q \Delta V=\frac{1}{2}\left(1.235 \times 10^{-9} \mathrm{C}\right)(50 \mathrm{~V})=3.09 \times 10^{-8} \mathrm{~J}$
7.)

7.)
b.)

The charge on the equivalent capacitance is the charge on C_{1}, C_{5}, and C_{234} since capacitors in series have the same charge and the same charge as their equivalent.

$$
Q_{12345}=C_{12345} \Delta V_{a b}=\left(1.38 \times 10^{-6} \mathrm{~F}\right)(540 \mathrm{~V})=7.452 \times 10^{-4} \mathrm{C}
$$

$$
Q_{1}=Q_{5}=Q_{234}=7.452 \times 10^{-4} \mathrm{C}
$$

and $\quad \Delta V_{1}=\frac{Q_{1}}{C_{1}}=\frac{\left(7.452 \times 10^{-4} \mathrm{C}\right)}{\left(4.6 \times 10^{-6} \mathrm{~F}\right)}=162 \mathrm{~V}$ and $\Delta V_{5}=\frac{Q_{5}}{C_{5}}=\frac{\left(7.452 \times 10^{-4} \mathrm{C}\right)}{\left(4.6 \times 10^{-6} \mathrm{~F}\right)}=162 \mathrm{~V}$

The voltage on the equivalent C_{234} is the same as the voltage on C_{2} and the equivalent C_{34} since capacitors in parallel have the same voltage and the same voltage as their equivalent.
so

$$
\Delta V_{2}=\Delta V_{34}=\Delta V_{234}=\frac{Q_{234}}{C_{234}}=\frac{\left(7.452 \times 10^{-4} \mathrm{C}\right)}{\left(3.45 \times 10^{-6} \mathrm{~F}\right)}=216 \mathrm{~V}
$$

and $\quad Q_{2}=C_{2} \Delta V_{2}=\left(2.3 \times 10^{-6} \mathrm{~F}\right)(216 \mathrm{~V})=4.968 \times 10^{-4} \mathrm{C}$

To summarize:

Capacitor	Capacitance	Charge	Voltage
C_{1}	$4.6 \times 10^{-6} \mathrm{~F}$	$7.452 \times 10^{-4} \mathrm{C}$	162 V
C_{2}	$2.3 \times 10^{-6} \mathrm{~F}$	$4.968 \times 10^{-4} \mathrm{C}$	216 V
C_{3}	$2.3 \times 10^{-6} \mathrm{~F}$	$2.484 \times 10^{-4} \mathrm{C}$	108 V
C_{4}	$2.3 \times 10^{-6} \mathrm{~F}$	$2.484 \times 10^{-4} \mathrm{C}$	108 V
C_{5}	$4.6 \times 10^{-6} \mathrm{~F}$	$7.452 \times 10^{-4} \mathrm{C}$	162 V

1.)

$$
C_{1}=C_{2}=5.0 \mu \mathrm{~F} \text { and } C_{3}=C_{4}=C_{5}=10.0 \mu \mathrm{~F}, V_{a b}=120 \mathrm{~V}
$$

C_{4} and C_{5} are in series so they can be replaced by their equivalent.

$$
\frac{1}{C_{45}}=\frac{1}{C_{4}}+\frac{1}{C_{5}}=\frac{1}{10 \mu \mathrm{~F}}+\frac{1}{10 \mu \mathrm{~F}} \quad \text { and } \quad C_{45}=5 \mu \mathrm{~F}
$$

C_{45} and C_{3} are in parallel so they can be replaced by their equivalent.
$C_{345}=C_{3}+C_{45}=10 \mu \mathrm{~F}+5 \mu \mathrm{~F}=15 \mu \mathrm{~F}$

C_{1} and C_{2} are in parallel so they can be replaced by their equivalent.
$C_{12}=C_{1}+C_{2}=5 \mu \mathrm{~F}+5 \mu \mathrm{~F}=10 \mu \mathrm{~F}$

C_{12} and C_{345} are in series so they can be replaced by their equivalent.

$$
\frac{1}{C_{12345}}=\frac{1}{C_{12}}+\frac{1}{C_{345}}=\frac{1}{10 \mu \mathrm{~F}}+\frac{1}{15 \mu \mathrm{~F}} \quad \text { and } \quad C_{12345}=6 \mu \mathrm{~F}
$$

b.)

The charge on the equivalent capacitance is the charge on C_{1}, C_{5}, and C_{234} since capacitors in series have the same charge and the same charge as their equivalent.

$$
\begin{aligned}
& Q_{12345}=C_{12345} \Delta V_{a b}=\left(6.0 \times 10^{-6} \mathrm{~F}\right)(120 \mathrm{~V})=7.20 \times 10^{-4} \mathrm{C} \\
& Q_{12}=Q_{345}=7.20 \times 10^{-4} \mathrm{C}
\end{aligned}
$$

The voltage on the equivalent C_{1} is the same as the voltage on C_{2} and the equivalent C_{12} since capacitors in parallel have the same voltage and the same voltage as their equivalent.

$$
\Delta V_{1}=\Delta V_{2}=\Delta V_{12}=\frac{Q_{12}}{C_{12}}=\frac{7.20 \times 10^{-4} \mathrm{C}}{10 \times 10^{-6} \mathrm{~F}}=72 \mathrm{~V}
$$

It follows that:
and

$$
\begin{aligned}
& Q_{1}=C_{1} \Delta V_{1}=\left(5.0 \times 10^{-6} \mathrm{~F}\right)(72 \mathrm{~V})=3.60 \times 10^{-4} \mathrm{C} \\
& Q_{2}=C_{2} \Delta V_{2}=\left(5.0 \times 10^{-6} \mathrm{~F}\right)(72 \mathrm{~V})=3.60 \times 10^{-4} \mathrm{C}
\end{aligned}
$$

Also: $\quad \Delta V_{345}=\frac{Q_{345}}{C_{345}}=\frac{\left(7.2 \times 10^{-4} \mathrm{C}\right)}{\left(15 \times 10^{-6} \mathrm{~F}\right)}=48 \mathrm{~V}$ which is the voltage on C_{3} and C_{45} since they are in parallel and have the same voltage as their equivalent C_{345}. It follows that:

To summarize:

Capacitor	Capacitance	Charge	Voltage
C_{1}	$5.0 \times 10^{-6} \mathrm{~F}$	$3.60 \times 10^{-4} \mathrm{C}$	72 V
C_{2}	$5.0 \times 10^{-6} \mathrm{~F}$	$3.60 \times 10^{-4} \mathrm{C}$	72 V
C_{3}	$10 \times 10^{-6} \mathrm{~F}$	$4.80 \times 10^{-4} \mathrm{C}$	48 V
C_{4}	$10 \times 10^{-6} \mathrm{~F}$	$2.40 \times 10^{-4} \mathrm{C}$	24 V
C_{5}	$10 \times 10^{-6} \mathrm{~F}$	$2.40 \times 10^{-4} \mathrm{C}$	24 V

c.) $U_{C}=\frac{1}{2} Q_{e q} V_{a b}=\frac{1}{2} C_{e q} V_{a b}^{2}=\frac{1}{2}\left(6.0 \times 10^{-6} \mathrm{C}\right)(120 \mathrm{~V})^{2}=4.32 \times 10^{-2} \mathrm{~J}$
2.)
a.)

C_{4} and C_{5} are in parallel and can be replaced by their equivalent C_{45}.
$C_{45}=C_{4}+C_{5}=5.0 \mu \mathrm{~F}+5.0 \mu \mathrm{~F}=10 \mu \mathrm{~F}$

2.)
b.)

and

The voltage on the equivalent capacitance is the voltage on C_{1} and C_{2345} since capacitors in parallel have the same voltage and the same voltage as their equivalent.

$$
\begin{aligned}
& \Delta V_{12345}=\Delta V_{1}=\Delta V_{2345}=V_{a b}=100 \mathrm{~V} \\
& Q_{1}=C_{1} V_{1}=\left(5.0 \times 10^{-6} \mathrm{~F}\right)(100 \mathrm{~V})=5.00 \times 10^{-4} \mathrm{C} \\
& Q_{2345}=C_{2345} V_{2345}=\left(2.0 \times 10^{-6} \mathrm{~F}\right)(100 \mathrm{~V})=2.00 \times 10^{-4} \mathrm{C}
\end{aligned}
$$

The charge on C_{2}, C_{45}, and C_{3} is the same since they are in series and the same charge as their equivalent C_{2345}.

$$
Q_{2}=Q_{45}=Q_{3}=Q_{2345}=2.00 \times 10^{-4} \mathrm{C}
$$

so
$\Delta V_{2}=\frac{Q_{2}}{C_{2}}=\frac{\left(2.00 \times 10^{-4} \mathrm{C}\right)}{\left(5.0 \times 10^{-6} \mathrm{~F}\right)}=40 \mathrm{~V}$ and $\Delta V_{3}=\frac{Q_{3}}{C_{3}}=\frac{\left(2.00 \times 10^{-4} \mathrm{C}\right)}{\left(5.0 \times 10^{-6} \mathrm{~F}\right)}=40 \mathrm{~V}$
also $\quad \Delta V_{45}=\frac{Q_{45}}{C_{45}}=\frac{\left(2.00 \times 10^{-4} \mathrm{C}\right)}{\left(10.0 \times 10^{-6} \mathrm{~F}\right)}=20 \mathrm{~V}$

The voltage on C_{4} and C_{5} are the same and equal to the voltage on their equivalent C_{45} because they are in parallel.

$$
\begin{aligned}
& \Delta V_{4}=\Delta V_{5}=\Delta V_{45}=20 \mathrm{~V} \\
& Q_{4}=C_{4} V_{4}=\left(5.0 \times 10^{-6} \mathrm{~F}\right)(20 \mathrm{~V})=1.00 \times 10^{-4} \mathrm{C} \\
& Q_{5}=C_{5} V_{5}=\left(5.0 \times 10^{-6} \mathrm{~F}\right)(20 \mathrm{~V})=1.00 \times 10^{-4} \mathrm{C}
\end{aligned}
$$

To summarize:

Capacitor	Capacitance	Charge	Voltage
C_{1}	$5.0 \times 10^{-6} \mathrm{~F}$	$5.0 \times 10^{-4} \mathrm{C}$	100 V
C_{2}	$5.0 \times 10^{-6} \mathrm{~F}$	$2.0 \times 10^{-4} \mathrm{C}$	40 V
C_{3}	$5.0 \times 10^{-6} \mathrm{~F}$	$2.0 \times 10^{-4} \mathrm{C}$	40 V
C_{4}	$5.0 \times 10^{-6} \mathrm{~F}$	$1.0 \times 10^{-4} \mathrm{C}$	20 V
C_{5}	$5.0 \times 10^{-6} \mathrm{~F}$	$1.0 \times 10^{-4} \mathrm{C}$	20 V

c.) $\quad U_{C}=\frac{1}{2} Q_{e q} V_{a b}=\frac{1}{2} C_{e q} V_{a b}^{2}=\frac{1}{2}\left(7.0 \times 10^{-6} \mathrm{C}\right)(100 \mathrm{~V})^{2}=3.50 \times 10^{-2} \mathrm{~J}$

b.)

so

$Q_{12}=Q_{345}=4.5 \times 10^{-4} \mathrm{C}$
The voltage on the equivalent C_{1} is the same as the voltage on C_{2} and the equivalent C_{12} since capacitors in parallel have the same voltage and the same voltage as their equivalent.

$$
\Delta V_{1}=\Delta V_{2}=\Delta V_{12}=\frac{Q_{12}}{C_{12}}=\frac{4.5 \times 10^{-4} \mathrm{C}}{10 \times 10^{-6} \mathrm{~F}}=45 \mathrm{~V}
$$

It follows that:
and

$$
\begin{aligned}
& Q_{1}=C_{1} \Delta V_{1}=\left(6.0 \times 10^{-6} \mathrm{~F}\right)(45 \mathrm{~V})=2.70 \times 10^{-4} \mathrm{C} \\
& Q_{2}=C_{2} \Delta V_{2}\left(4.0 \times 10^{-6} \mathrm{~F}\right)(45 \mathrm{~V})=1.80 \times 10^{-4} \mathrm{C}
\end{aligned}
$$

Also: $\quad \Delta V_{345}=\frac{Q_{345}}{C_{345}}=\frac{\left(4.5 \times 10^{-4} \mathrm{C}\right)}{\left(6.0 \times 10^{-6} \mathrm{~F}\right)}=75 \mathrm{~V}$ which is the voltage on C_{3} and C_{45} since they are in parallel and have the same voltage as their equivalent C_{345}. It follows that:

To summarize:

Capacitor	Capacitance	Charge	Voltage
C_{1}	$6.0 \times 10^{-6} \mathrm{~F}$	$2.7 \times 10^{-4} \mathrm{C}$	45 V
C_{2}	$4.0 \times 10^{-6} \mathrm{~F}$	$1.8 \times 10^{-4} \mathrm{C}$	45 V
C_{3}	$3.6 \times 10^{-6} \mathrm{~F}$	$2.7 \times 10^{-4} \mathrm{C}$	75 V
C_{4}	$4.0 \times 10^{-6} \mathrm{~F}$	$1.8 \times 10^{-4} \mathrm{C}$	45 V
C_{5}	$6.0 \times 10^{-6} \mathrm{~F}$	$1.8 \times 10^{-4} \mathrm{C}$	30 V

c.) $U_{C}=\frac{1}{2} Q_{e q} V_{a b}=\frac{1}{2} C_{e q} V_{a b}^{2}=\frac{1}{2}\left(3.75 \times 10^{-6} \mathrm{C}\right)(120 \mathrm{~V})^{2}=2.70 \times 10^{-2} \mathrm{~J}$
4.)

$V_{a b}=360 \mathrm{~V}$
With switch S open the two sets of $3.00 \mu \mathrm{~F}$ and $6.00 \mu \mathrm{~F}$ capacitors are in series and can be replaced by their equivalent.
$\frac{1}{C_{36}}=\frac{1}{3.00 \mu \mathrm{~F}}+\frac{1}{6.00 \mu \mathrm{~F}} \quad$ and $\quad C_{36}=2.00 \mu \mathrm{~F}$

These are in parallel and the equivalent capacitance is:
$C_{e q}=2.00 \mu \mathrm{~F}+2.00 \mu \mathrm{~F}=4.00 \mu \mathrm{~F}$

The voltage on the $4.00 \mu \mathrm{~F}$ equivalent is the same as the voltage on the two $2.00 \mu \mathrm{~F}$ equivalents and is equal to $V_{a b}=360 \mathrm{~V}$. The charges are:
$Q=C \Delta V=\left(2.00 \times 10^{-6} \mathrm{~F}\right)(360 \mathrm{~V})=7.20 \times 10^{-4} \mathrm{C}$
This is the charge on the $3.00 \mu \mathrm{~F}$ and $6.00 \mu \mathrm{~F}$ capacitors since they are in series. There voltages are:
$\Delta V_{3}=\frac{Q_{3}}{C_{3}}=\frac{\left(7.20 \times 10^{-4} \mathrm{C}\right)}{\left(3.00 \times 10^{-6} \mathrm{~F}\right)}=240 \mathrm{~V}$ and $\Delta V_{6}=\frac{Q_{6}}{C_{6}}=\frac{\left(7.20 \times 10^{-4} \mathrm{C}\right)}{\left(6.00 \times 10^{-6} \mathrm{~F}\right)}=120 \mathrm{~V}$

If $V_{b}=0$ then $V_{a}=360 \mathrm{~V}$ and $V_{d}=V_{a}-V_{3}=360 \mathrm{~V}-240 \mathrm{~V}=120 \mathrm{~V}$ and $V_{c}=V_{a}-V_{6}=360 \mathrm{~V}-120 \mathrm{~V}=240 \mathrm{~V}$.
Therefore: $\quad V_{c d}=V_{c}-V_{d}=240 \mathrm{~V}-120 \mathrm{~V}=120 \mathrm{~V}$
b.)

With switch S closed the two sets of $3.00 \mu \mathrm{~F}$ and $6.00 \mu \mathrm{~F}$ capacitors are in parallel and can be replaced by their equivalent.

$$
C_{36}=3.00 \mu \mathrm{~F}+6.00 \mu \mathrm{~F}=9.00 \mu \mathrm{~F}
$$

The two $9.00 \mu \mathrm{~F}$ equivalents are in series so the equivalent capacitance is:

$$
\frac{1}{C_{e q}}=\frac{1}{9.00 \mu \mathrm{~F}}+\frac{1}{9.00 \mu \mathrm{~F}} \quad \text { and } \quad C_{e q}=4.50 \mu \mathrm{~F}
$$

The charge on the two $9.00 \mu \mathrm{~F}$ equivalents is the same as the charge on the $4.50 \mu \mathrm{~F}$ equivalent capacitance.

$$
Q=C \Delta V=\left(4.50 \times 10^{-6} \mathrm{~F}\right)(360 \mathrm{~V})=1.62 \times 10^{-4} \mathrm{C}
$$

The voltages on the $9.00 \mu \mathrm{~F}$ equivalents are the same: $\quad \Delta V_{9}=\frac{Q_{9}}{C_{9}}=\frac{\left(1.62 \times 10^{-4} \mathrm{C}\right)}{\left(9.00 \times 10^{-6} \mathrm{~F}\right)}=180 \mathrm{~V}$
This is the voltage on the $3.00 \mu \mathrm{~F}$ and $6.00 \mu \mathrm{~F}$ capacitors because they are in parallel and all capacitors have voltages $\Delta V=180 \mathrm{~V}$.
c.) Based upon equivalent capacitances:

$$
\begin{aligned}
& Q_{a}=C_{e q} V_{a b}=\left(4.00 \times 10^{-6} \mathrm{~F}\right)(360 \mathrm{~V})=1.44 \times 10^{-3} \mathrm{C} \\
& Q_{b}=C_{e q} V_{a b}=\left(4.50 \times 10^{-6} \mathrm{~F}\right)(360 \mathrm{~V})=1.62 \times 10^{-3} \mathrm{C}
\end{aligned}
$$

and the charge that flows through switch S is: $\quad Q_{b}-Q_{a}=1.62 \times 10^{-3} \mathrm{C}-1.44 \times 10^{-3} \mathrm{C}=1.80 \times 10^{-4} \mathrm{C}$
5.) Cylindrical air capacitor $L=25.0 \mathrm{~m}$ and $U_{c}=5.40 \times 10^{-9} \mathrm{~J}$ when $V=3.00 \mathrm{~V}$
a.) $\quad U_{C}=\frac{1}{2} Q \Delta V$ so $Q=\frac{2 U_{C}}{\Delta V}=\frac{2\left(5.40 \times 10^{-9} \mathrm{~J}\right)}{(3.00 \mathrm{~V})}=3.6 \times 10^{-9} \mathrm{C}$
b.) for cylindrical capacitors

$$
\begin{aligned}
& \Delta V=\frac{Q}{2 \pi \varepsilon_{0} L} \ln \left(\frac{r_{o}}{r_{i}}\right) \text { so } \ln \left(\frac{r_{o}}{r_{i}}\right)=\frac{2 \pi \varepsilon_{0} L \Delta V}{Q} \quad \text { and } \quad \frac{r_{o}}{r_{i}}=\exp \left(\frac{2 \pi \varepsilon_{0} L \Delta V}{Q}\right) \\
& \frac{r_{o}}{r_{i}}=\exp \left(\frac{2 \pi\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)(25 \mathrm{~m})(3.00 \mathrm{~V})}{\left(3.6 \times 10^{-9} \mathrm{C}\right)}\right)=3.19 \quad \text { and } \frac{r_{i}}{r_{o}}=0.314
\end{aligned}
$$

6.)
parallel-plate capacitor with dielectric constant $\kappa=3.40$ and dielectric strength $E=2.00 \times 10^{7} \mathrm{~V} / \mathrm{m}$ capacitance $C=1.37 \mathrm{nF}$ and voltage must be at least $\Delta V=6000 \mathrm{~V}$.

$$
\begin{aligned}
& \Delta V=E \cdot d \quad \text { so } \quad d=\frac{\Delta V}{E}=\frac{(6000 \mathrm{~V})}{\left(2.00 \times 10^{7} \frac{\mathrm{~V}}{\mathrm{~m}}\right)}=3.00 \times 10^{-4} \mathrm{~m} \\
& C=\frac{\kappa \varepsilon_{0} A}{d} \quad \text { so } \quad A=\frac{C d}{\kappa \varepsilon_{0}}=\frac{\left(1.37 \times 10^{-9} \mathrm{~F}\right)\left(3.00 \times 10^{-4} \mathrm{~m}\right)}{3.4\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)}=1.37 \times 10^{-2} \mathrm{~m}^{2}
\end{aligned}
$$

7.) parallel-plate capacitor with $d=1.60 \mathrm{~mm}$ and dielectric constant $\kappa=4.50$ and dielectric strength $E=1.40 \times 10^{6} \mathrm{~V} / \mathrm{m}$
a.)

$$
E=\frac{\sigma}{\kappa \varepsilon_{\mathrm{o}}} \quad \text { so } \quad \sigma=\kappa \varepsilon_{0} E=4.50\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right)\left(1.40 \times 10^{6} \frac{\mathrm{~V}}{\mathrm{~m}}\right)=5.58 \times 10^{-5} \frac{\mathrm{C}}{\mathrm{~m}^{2}}
$$

b.)

$$
\sigma_{i}=\sigma\left(1-\frac{1}{\kappa}\right)=5.58 \times 10^{-5} \frac{\mathrm{C}}{\mathrm{~m}^{2}}\left(1-\frac{1}{4.50}\right)=4.34 \times 10^{-5} \frac{\mathrm{C}}{\mathrm{~m}^{2}}
$$

8.) The two slabs are in series (they have the same charge density) with same area A and thickness $\frac{d}{2}$

$$
C_{1}=\frac{\kappa_{1} \varepsilon_{0} A}{\frac{d}{2}}=\frac{2 \kappa_{1} \varepsilon_{0} A}{d} \quad \text { and } \quad C_{2}=\frac{2 \kappa_{2} \varepsilon_{0} A}{d}
$$

Since they are in series:

$$
\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}=\frac{1}{\frac{2 \kappa_{1} \varepsilon_{0} A}{d}}+\frac{1}{\frac{2 \kappa_{2} \varepsilon_{0} A}{d}}=\frac{d}{2 \varepsilon_{0} A}\left(\frac{1}{\kappa_{1}}+\frac{1}{\kappa_{2}}\right)=\frac{d}{2 \varepsilon_{0} A}\left(\frac{\kappa_{2}+\kappa_{1}}{\kappa_{1} \kappa_{2}}\right)
$$

$$
C_{e q}=\frac{2 \varepsilon_{0} A}{d}\left(\frac{\kappa_{1} \kappa_{2}}{\kappa_{2}+\kappa_{1}}\right)
$$

