1.) $I=4.8 \mathrm{~A}$ for 2 hours

$$
I=\frac{\Delta Q}{\Delta t} \quad \text { so } \quad \Delta Q=I \cdot \Delta t=(4.8 \mathrm{~A})(7200 \mathrm{~s})=\left(4.8 \frac{\mathrm{C}}{\mathrm{~s}}\right)(7200 \mathrm{~s})=34,560 \mathrm{C}
$$

2.) $\Delta Q=72 \mathrm{C}, \Delta t=1 \mathrm{hr}, n=5.8 \times 10^{28} \mathrm{e} ’ \mathrm{~s} / \mathrm{m}^{3}, D=1.3 \mathrm{~mm}$
a.) $I=\frac{\Delta Q}{\Delta t}=\frac{72 \mathrm{C}}{3600 \mathrm{~s}}=0.02 \mathrm{~A}$
b.) $I=n q v_{d} A \quad$ so $\quad v_{d}=\frac{I}{n q A}=\frac{(0.02 \mathrm{~A})}{\left(5.8 \times 10^{28} \mathrm{~m}^{-3}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(\pi\left(0.65 \times 10^{-3} \mathrm{~m}\right)^{2}\right)}=1.62 \times 10^{-6} \frac{\mathrm{~m}}{\mathrm{~s}}$
3.) $\quad \ell=35.0 \mathrm{~m}$ and $D=2.06 \mathrm{~mm}$
for copper $\rho=1.72 \times 10^{-8} \Omega \cdot \mathrm{~m} \quad R_{C u}=\frac{\rho \ell}{A}=\frac{\left(1.72 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)(35 \mathrm{~m})}{\pi\left(1.025 \times 10^{-3} \mathrm{~m}\right)^{2}}=0.18 \Omega$
for gold $\rho=2.44 \times 10^{-8} \Omega \cdot \mathrm{~m} \quad R_{A u}=\frac{\rho \ell}{A}=\frac{\left(2.44 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)(35 \mathrm{~m})}{\pi\left(1.025 \times 10^{-3} \mathrm{~m}\right)^{2}}=0.26 \Omega$
for silver $\rho=1.47 \times 10^{-8} \Omega \cdot \mathrm{~m}$

$$
R_{C u}=\frac{\rho \ell}{A}=\frac{\left(1.47 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)(35 \mathrm{~m})}{\pi\left(1.025 \times 10^{-3} \mathrm{~m}\right)^{2}}=0.16 \Omega
$$

4.) $D_{C u}=2.2 \mathrm{~mm}$

$$
\begin{aligned}
& \frac{R_{C u}}{\ell}=\frac{\rho}{A}=\frac{\left(1.72 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)(35 \mathrm{~m})}{\pi\left(1.1 \times 10^{-3} \mathrm{~m}\right)^{2}}=4.52 \times 10^{-3} \frac{\Omega}{\mathrm{~m}} \\
& \frac{R}{\ell}=\frac{\rho}{A}=\frac{\rho}{\pi \cdot r^{2}} \quad \text { so } \quad r=\sqrt{\frac{\rho \ell}{\pi \cdot R}}=\sqrt{\frac{\left(2.75 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)}{\pi\left(4.52 \times 10^{-3} \frac{\Omega}{\mathrm{~m}}\right)}}=1.39 \times 10^{-3} \mathrm{~m} \\
& D=2 r=2\left(1.39 \times 10^{-3} \mathrm{~m}\right)=2.78 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

5.) $R=1.00 \Omega$ for copper wire with diameter $D=0.750 \mathrm{~mm}$ and length ℓ

$$
R=\frac{\rho \ell}{A} \quad \text { so } \quad \ell=\frac{R A}{\rho}=\frac{(1.00 \Omega) \pi\left(0.375 \times 10^{-3} \mathrm{~m}\right)^{2}}{\left(1.72 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)}=26 \mathrm{~m}
$$

6.)

Terminal voltage is 20.2 V for the 24 V battery

$$
\begin{aligned}
& \text { a.) } \quad V_{a b}=\mathcal{E}-I r \quad \text { so } \quad r=\frac{\mathcal{E}-V_{a b}}{I}=\frac{(24 \mathrm{~V}-20.2 \mathrm{~V})}{4 \mathrm{~A}}=0.95 \Omega \\
& \text { b.) } \quad V_{R}=V_{a b}=20.2 \mathrm{~V} \quad \text { and } \quad V=I R \quad \text { or } \quad R=\frac{V}{I}=\frac{(20.2 \mathrm{~V})}{(4 \mathrm{~A})}=5.05 \Omega
\end{aligned}
$$

7.)

Ideal voltmeter has infinite resistance and there will be no current.
a.) $\quad I=0$
b.) $\quad V_{a b}=\mathcal{E}-I r=5.0 \mathrm{~V}-0=5.0 \mathrm{~V}$
c.) Voltmeter will read the terminal voltage of the battery $\quad V=V_{a b}=5.0 \mathrm{~V}$
8.)

a.) Kirchhoff's Loop rule:

Going clockwise starting at b

$$
\begin{aligned}
& V_{16 \mathrm{~V}}-V_{1.6 \Omega}-V_{5.0 \Omega}-V_{1.4 \Omega}-V_{8 \mathrm{~V}}-V_{9.0 \Omega}=0 \\
& 16 \mathrm{~V}-I(1.6 \Omega)-I(5.0 \Omega)-I(1.4 \Omega)-8.0 \mathrm{~V}-I(9.0 \Omega)=0 \\
& 8 \mathrm{~V}-I(17 \Omega)=0 \quad \text { and } \quad I=\frac{8 \mathrm{~V}}{17 \Omega}=0.471 \mathrm{~A} \text { and is clockwise }
\end{aligned}
$$

b.) $\quad V_{a b}=\mathcal{E}-I r=16.0 \mathrm{~V}-(0.471 \mathrm{~A})(1.6 \Omega)=15.25 \mathrm{~V}$
c.) $\quad V_{a c}=V_{a}-V_{c} \quad$ making point c the reference point (i.e. $V_{c}=0$).

$$
\begin{aligned}
& V_{a}=-I(9.0 \Omega)+16 \mathrm{~V}-I(1.6 \Omega)=16 \mathrm{~V}-(0.471 \mathrm{~A})(10.6 \Omega)=11.01 \mathrm{~V} \\
& V_{a c}=V_{a}-V_{c}=11.01 \mathrm{~V}-0=11.01 \mathrm{~V}
\end{aligned}
$$

9.)

a.) Kirchhoff's Loop rule:

Going counterclockwise starting at a

$$
\begin{aligned}
& -V_{1.6 \Omega}+V_{16 \mathrm{~V}}-V_{9.0 \Omega}+V_{8 \mathrm{~V}}-V_{1.4 \Omega}-V_{5.0 \Omega}=0 \\
& -I(1.6 \Omega)+16 \mathrm{~V}-I(9.0 \Omega)+8.0 \mathrm{~V}-I(1.4 \Omega)-I(5.0 \Omega)=0 \\
& 24 \mathrm{~V}-I(17 \Omega)=0 \text { and } I=\frac{24 \mathrm{~V}}{17 \Omega}=1.41 \mathrm{~A} \text { and is counterclockwise }
\end{aligned}
$$

b.) $\quad V_{a b}=\mathcal{E}-I r=16.0 \mathrm{~V}-(1.41 \mathrm{~A})(1.6 \Omega)=13.74 \mathrm{~V}$
c.) $\quad V_{a c}=V_{a}-V_{c}$ making point c the reference point (i.e. $V_{c}=0$).

$$
\begin{aligned}
& V_{a}=I(9.0 \Omega)-16 \mathrm{~V}+I(1.6 \Omega)=(1.41 \mathrm{~A})(10.6 \Omega)-16 \mathrm{~V}=-1.05 \mathrm{~V} \\
& V_{a c}=V_{a}-V_{c}=-1.05 \mathrm{~V}-0=-1.05 \mathrm{~V}
\end{aligned}
$$

10.) $P=369 \mathrm{~W}$ and $V=18.0 \mathrm{~V}$

$$
P=I V=\frac{V}{R} V=\frac{V^{2}}{R} \quad \text { so } \quad R=\frac{V^{2}}{P}=\frac{(18 \mathrm{~V})^{2}}{369 \mathrm{~W}}=0.878 \Omega
$$

11.) $V=12.0 \mathrm{~V}$ and $I=0.29 \mathrm{~A}$

$$
P=I V \quad \text { and } \quad E=P t=I V t=(0.29 \mathrm{~A})(12 \mathrm{~V})(16,200 \mathrm{~s})=5.64 \times 10^{4} \mathrm{~J}
$$

$t=4.5 \mathrm{hr}=16,200 \mathrm{~s}$
1.)

$R_{1}=12 \Omega, R_{2}=20.0 \Omega, R_{3}=30.0 \Omega$, and $R_{4}=40.0 \Omega$. The potential difference between a and b is 96 V .
a.)

R_{2} and R_{4} are in series and can be replaced by their equivalent:

$$
R_{24}=R_{2}+R_{4}=20 \Omega+40 \Omega=60 \Omega
$$

R_{24} and R_{3} are in parallel and can be replaced by their equivalent:

$$
\frac{1}{R_{234}}=\frac{1}{R_{24}}+\frac{1}{R_{3}}=\frac{1}{60 \Omega}+\frac{1}{30 \Omega} \quad \text { and } \quad R_{234}=20 \Omega
$$

R_{234} and R_{1} are in series and can be replaced by their equivalent:

$$
R_{e q}=R_{1234}=R_{1}+R_{234}=12 \Omega+20 \Omega=32 \Omega
$$

b.)

The current coming out of the battery is: $\quad I_{1}=\frac{V_{a b}}{R_{e q}}=\frac{96 \mathrm{~V}}{32 \Omega}=3 \mathrm{~A}$
This is the current through R_{1} and the equivalent R_{234}. Also,
$V_{1}=I_{1} R_{1}=(3 \mathrm{~A})(12 \Omega)=36 \mathrm{~V}$ and $V_{234}=I_{1} R_{234}=(3 \mathrm{~A})(20 \Omega)=60 \mathrm{~V}$

The voltage across R_{3} and the equivalent R_{24} is the same as that across their equivalent R_{234} because they are in parallel.

So, $V_{3}=V_{24}=V_{234}=60 \mathrm{~V}$

Also, $\quad I_{2}=\frac{V_{3}}{R_{3}}=\frac{60 \mathrm{~V}}{30 \Omega}=2 \mathrm{~A} \quad$ and $\quad I_{3}=\frac{V_{24}}{R_{24}}=\frac{60 \mathrm{~V}}{60 \Omega}=1 \mathrm{~A}$
(Note that $I_{1}=I_{2}+I_{3}$)

Finally, I_{3} is the current in R_{2} and R_{4} because they are in series and have the same current as their equivalent.
and

$$
\begin{array}{r}
V_{2}=I_{3} R_{2}=(1 \mathrm{~A})(20 \Omega)=20 \mathrm{~V} \\
V_{4}=I_{3} R_{4}=(1 \mathrm{~A})(40 \Omega)=40 \mathrm{~V} \\
\quad\left(\text { Note that } V_{24}=V_{2}+V_{4}\right)
\end{array}
$$

1.) b.) To summarize:

Resistor	Resistance	Current	Voltage	Power
R_{1}	12Ω	3 A	36 V	108 W
R_{2}	20Ω	1 A	20 V	20 W
R_{3}	30Ω	2 A	60 V	120 W
R_{4}	40Ω	1 A	40 V	40 W

c.)

$$
P=I_{1} V_{a b}=(3 \mathrm{~A})(96 \mathrm{~V})=288 \mathrm{~W} \quad \text { This is same as the sum of the individual powers for each resistor. }
$$

2.)

a.) Applying Kirchhoff's Loop Rule to Loop 1,
$\mathcal{E}_{1}+8 \mathrm{~V}=(2 \mathrm{~A})(1 \Omega)+(2 \mathrm{~A})(3 \Omega)+I_{1}(6 \Omega) \quad(1)$
Applying Kirchhoff's Loop Rule to Loop 2,
$8 \mathrm{~V}=I_{1}(6 \Omega)-I_{2}(12 \Omega)(2)$
Applying Kirchhoff's Junction Rule to node a,
$I_{1}+I_{2}=I$ or $I_{2}=2 \mathrm{~A}-I_{1}$
Combining equations (2) and (3): $\quad 8 \mathrm{~V}=I_{1}(6 \Omega)-\left(2 \mathrm{~A}-I_{1}\right)(12 \Omega)=-24 \mathrm{~V}+I_{1}(18 \Omega)$
$32 \mathrm{~V}=I_{1}(18 \Omega)$ and $I_{1}=\frac{32 \mathrm{~V}}{18 \Omega}=1.78 \mathrm{~A}$
Substituting this into (1):
$\mathcal{E}_{1}+8 \mathrm{~V}=(2 \mathrm{~A})(1 \Omega)+(2 \mathrm{~A})(3 \Omega)+(1.78 \mathrm{~A})(6 \Omega)=18.67 \mathrm{~V}$ $\mathcal{E}_{1}=18.67 \mathrm{~V}-8 \mathrm{~V}=10.67 \mathrm{~V}$
b.) $\quad I_{2}=2 \mathrm{~A}-I_{1}=2 \mathrm{~A}-1.78 \mathrm{~A}=0.22 \mathrm{~A}$
c.) $P_{1 \Omega}=I V=I^{2} R=(2 \mathrm{~A})^{2}(1 \Omega)=4 \mathrm{~W} \quad P_{3 \Omega}=I V=I^{2} R=(2 \mathrm{~A})^{2}(3 \Omega)=12 \mathrm{~W}$

$$
P_{6 \Omega}=I V=I^{2} R=(1.78 \mathrm{~A})^{2}(6 \Omega)=19 \mathrm{~W} \quad P_{12 \Omega}=I V=I^{2} R=(0.22 \mathrm{~A})^{2}(12 \Omega)=0.58 \mathrm{~W}
$$

d.) $P_{10.67 \mathrm{~V}}=I V=(2 \mathrm{~A})(10.67 \mathrm{~V})=21.34 \mathrm{~W} \quad P_{8 \mathrm{~V}}=I V=(1.78 \mathrm{~A})(8 \mathrm{~V})=14.24 \mathrm{~W}$

Power from batteries is: $\quad P_{\text {batteries }}=P_{10.67 \mathrm{~V}}+P_{8 \mathrm{~V}}=21.34 \mathrm{~W}+14.24 \mathrm{~W}=35.6 \mathrm{~W}$

Power dissipated in resistors: $\quad P_{\text {resistors }}=P_{1 \Omega}+P_{3 \Omega}+P_{6 \Omega}+P_{12 \Omega}=4 \mathrm{~W}+12 \mathrm{~W}+19 \mathrm{~W}+0.58 \mathrm{~W}=35.6 \mathrm{~W}$

HO 37 Solutions

a.) Applying Kirchhoff's Loop Rule to Loop 1:
$12 \mathrm{~V}=I_{1}(1 \Omega)+I_{1}(3 \Omega)+(2 \mathrm{~A}) R=I_{1}(4 \Omega)+(2 \mathrm{~A}) R(1)$
Applying Kirchhoff's Loop Rule to Loop 2:
$12 \mathrm{~V}=I_{2}(8 \Omega)+I_{2}(4 \Omega)+(2 \mathrm{~A}) R=I_{2}(12 \Omega)+(2 \mathrm{~A}) R$ (2)
Applying Kirchhoff's Junction Rule to node a,

$$
\begin{equation*}
I_{1}+I_{2}=I=2 \mathrm{~A} \tag{3}
\end{equation*}
$$

Subtracting equation (1) from equation (2): $0=I_{2}(12 \Omega)-I_{1}(4 \Omega)=3 I_{2}-I_{1}$ (4)

Combining equation (3) and (4):

$$
\begin{aligned}
2 \mathrm{~A}=4 I_{2} \text { and } & I_{2}=\frac{2 \mathrm{~A}}{4}=0.5 \mathrm{~A} \quad \text { and } \\
& I_{1}=I-I_{2}=2 \mathrm{~A}-0.5 \mathrm{~A}=1.5 \mathrm{~A}
\end{aligned}
$$

Returning to equation (1):

$$
12 \mathrm{~V}=I_{1}(4 \Omega)+(2 \mathrm{~A}) R=(1.5 \mathrm{~A})(4 \Omega)+(2 \mathrm{~A}) R=6 \mathrm{~V}+(2 \mathrm{~A}) R
$$

$$
R=\frac{(12 \mathrm{~V}-6 \mathrm{~V})}{(2 \mathrm{~A})}=3 \Omega
$$

b.) Found currents in part (a). Voltages are:

$$
\begin{array}{ll}
V_{1 \Omega}=I_{1} R=(1.5 \mathrm{~A})(1 \Omega)=1.5 \mathrm{~V} & V_{3 \Omega}=I_{1} R=(1.5 \mathrm{~A})(3 \Omega)=4.5 \mathrm{~V} \\
V_{8 \Omega}=I_{2} R=(0.5 \mathrm{~A})(8 \Omega)=4 \mathrm{~V} & V_{4 \Omega}=I_{2} R=(0.5 \mathrm{~A})(4 \Omega)=2 \mathrm{~V}
\end{array}
$$

To summarize:

Resistance	Current	Voltage
3Ω	2 A	6 V
1Ω	1.5 A	1.5 V
3Ω	1.5 A	4.5 V
8Ω	0.5 A	4 V
4Ω	0.5 A	2 V

a.) (Again)

Currents can easily be obtained by recognizing that I_{1} and I_{2} are in parallel branches and divide the current I.

$$
\begin{aligned}
& I_{1}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) I=\left(\frac{12 \Omega}{4 \Omega+12 \Omega}\right)(2 \mathrm{~A})=1.5 \mathrm{~A} \\
& I_{2}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) I=\left(\frac{4 \Omega}{4 \Omega+12 \Omega}\right)(2 \mathrm{~A})=0.5 \mathrm{~A}
\end{aligned}
$$

(R_{1} is the total resistance of branch 1 and R_{2} is the total resistance of branch 2.)

HO 37 Solutions

a.) Applying Kirchhoff's Loop Rule to Loop 1:

$$
\begin{aligned}
& 6 \mathrm{~V}+12 \mathrm{~V}=(12 \Omega+2 \Omega) I_{1}+(6 \Omega) I_{2} \\
& 18 \mathrm{~V}=(14 \Omega) I_{1}+(6 \Omega) I_{2}
\end{aligned}
$$

Applying Kirchhoff's Loop Rule to Loop 2:

$$
\begin{aligned}
& 6 \mathrm{~V}+12 \mathrm{~V}=(6 \Omega) I_{2}+(4 \Omega+8 \Omega) I_{3} \\
& 18 \mathrm{~V}=(6 \Omega) I_{2}+(12 \Omega) I_{3}
\end{aligned}
$$

Applying Kirchhoff's Junction Rule to node a,
$I_{1}+I_{3}=I_{2}$ (3) so $I_{3}=I_{2}-I_{1}\left(3^{*}\right)$ and substituting this into equation (2) gives:
$18 \mathrm{~V}=(6 \Omega) I_{2}+(12 \Omega)\left(I_{2}-I_{1}\right)$
$18 \mathrm{~V}=(-12 \Omega) I_{1}+(18 \Omega) I_{2}\left(2^{*}\right)$
Multiplying equation (1) by 3 gives: $\quad 54 \mathrm{~V}=(42 \Omega) I_{1}+(18 \Omega) I_{2}\left(1^{*}\right)$
and subtracting equation $\left(2^{*}\right)$ from $\left(1^{*}\right)$ gives: $\quad 36 \mathrm{~V}=(54 \Omega) I_{1} \quad$ and $\quad I_{1}=\frac{36 \mathrm{~V}}{54 \Omega}=0.67 \mathrm{~A}$
From equation $\left(1^{*}\right): \quad I_{2}=\frac{18 \mathrm{~V}+(12 \Omega) I_{1}}{18 \Omega}=\frac{18 \mathrm{~V}+(12 \Omega)(0.67 \mathrm{~A})}{18 \Omega}=1.45 \mathrm{~A}$
Finally, from (3*): $I_{3}=I_{2}-I_{1}=1.45 \mathrm{~A}-0.67 \mathrm{~A}=0.78 \mathrm{~A}$
Voltages are:

$$
\begin{array}{ll}
V_{2 \Omega}=I_{1} R=(0.67 \mathrm{~A})(2 \Omega)=1.34 \mathrm{~V} & V_{12 \Omega}=I_{1} R=(0.67 \mathrm{~A})(12 \Omega)=8 \mathrm{~V} \\
V_{4 \Omega}=I_{2} R=(0.78 \mathrm{~A})(4 \Omega)=3.12 \mathrm{~V} & V_{8 \Omega}=I_{2} R=(0.78 \mathrm{~A})(8 \Omega)=6.24 \mathrm{~V} \quad V_{6 \Omega}=I_{2} R=(1.45 \mathrm{~A})(6 \Omega)=8.7 \mathrm{~V}
\end{array}
$$

To summarize:

Resistance	Current	Voltage
2Ω	0.67 A	1.34 V
12Ω	0.67 A	8 V
4Ω	0.78 A	3.12 V
8Ω	0.78 A	6.24 V
6Ω	1.45 A	8.7 V

b.)

$$
\begin{aligned}
& P_{6 \mathrm{~V}}=I_{1} V=(0.67 \mathrm{~A})(6 \mathrm{~V})=4 \mathrm{~W} \\
& P_{6 \mathrm{~V}}=I_{2} V=(0.78 \mathrm{~A})(6 \mathrm{~V})=4.7 \mathrm{~W} \\
& P_{12 \mathrm{~V}}=I V=(1.45 \mathrm{~A})(12 \mathrm{~V})=17.4 \mathrm{~W}
\end{aligned}
$$

Alternative solution using Mesh Currents:

a.) Using Loop Method (Mesh Currents):
$12 \mathrm{~V}+6 \mathrm{~V}=(20 \Omega) I_{1}+(6 \Omega) I_{2}($ Loop 1$)$
$18 \mathrm{~V}=(20 \Omega) I_{1}+(6 \Omega) I_{2}(1)$
$18 \mathrm{~V}=(6 \Omega) I_{1}+(18 \Omega) I_{2}(2)($ Loop 2$)$

Multiplying equation (1) by (3) gives: $\quad 54 \mathrm{~V}=(60 \Omega) I_{1}+(18 \Omega) I_{2}$
and subtracting equation (2) gives: $\quad 36 \mathrm{~V}=(54 \Omega) I_{1} \quad$ and $\quad I_{1}=\frac{36 \mathrm{~V}}{54 \Omega}=0.67 \mathrm{~A}$
From equation (1): $3 \mathrm{~A}=3.33 I_{1}+I_{2}$ and $I_{2}=3 \mathrm{~A}-3.33 I_{1}=3 \mathrm{~A}-3.33(0.67 \mathrm{~A})=0.78 \mathrm{~A}$
I_{1} is the current in the 2Ω and 12Ω resistors.
I_{2} is the current in the 4Ω and 8Ω resistors.
$I_{1}+I_{2}=1.45 \mathrm{~A}$ is the current in the 6Ω resistor.
Voltages are:

$$
\begin{array}{ll}
V_{2 \Omega}=I_{1} R=(0.67 \mathrm{~A})(2 \Omega)=1.34 \mathrm{~V} & V_{12 \Omega}=I_{1} R=(0.67 \mathrm{~A})(12 \Omega)=8 \mathrm{~V} \\
V_{4 \Omega}=I_{2} R=(0.78 \mathrm{~A})(4 \Omega)=3.12 \mathrm{~V} & V_{8 \Omega}=I_{2} R=(0.78 \mathrm{~A})(8 \Omega)=6.24 \mathrm{~V}
\end{array}
$$

To summarize:

Resistance	Current	Voltage
2Ω	0.67 A	1.34 V
12Ω	0.67 A	8 V
4Ω	0.78 A	3.12 V
8Ω	0.78 A	6.24 V
6Ω	1.45 A	8.7 V

b.)

$$
\begin{aligned}
& P_{6 \mathrm{~V}}=I_{1} V=(0.67 \mathrm{~A})(6 \mathrm{~V})=4 \mathrm{~W} \\
& P_{6 \mathrm{~V}}=I_{2} V=(0.78 \mathrm{~A})(6 \mathrm{~V})=4.7 \mathrm{~W} \\
& P_{12 \mathrm{~V}}=I V=(1.45 \mathrm{~A})(12 \mathrm{~V})=17.4 \mathrm{~W}
\end{aligned}
$$

5.)

a.)

Applying Kirchhoff's Loop rule on Loop 1:

$$
\begin{equation*}
\mathcal{E}=I_{1} R_{1}+I_{4} R_{4} \quad \text { or } \quad 13 \mathrm{~V}=I_{1}(1 \Omega)+I_{4}(1 \Omega) \tag{1}
\end{equation*}
$$

Applying Kirchhoff's Loop rule on Loop 2:
$0=I_{1} R_{1}-I_{3} R_{3}-I_{2} R_{2} \quad$ or $\quad 0=I_{1}(1 \Omega)-I_{2}(1 \Omega)-I_{3}(1 \Omega) \quad$ (2)
Applying Kirchhoff's Loop rule on Loop 3:

$$
\begin{equation*}
0=I_{3} R_{3}+I_{4} R_{4}-I_{5} R_{5} \quad \text { or } \quad 0=I_{3}(1 \Omega)+I_{4}(1 \Omega)+I_{5}(2 \Omega) \tag{3}
\end{equation*}
$$

Applying Kirchhoff's Junction rule on junction a :

$$
I=I_{1}+I_{2} \text { and } 0=I-I_{1}-I_{2}
$$

Applying Kirchhoff's Junction rule on junction c :

$$
\begin{equation*}
I_{1}+I_{3}=I_{4} \text { and } 0=I_{1}+I_{3}-I_{4} \tag{5}
\end{equation*}
$$

Applying Kirchhoff's Junction rule on junction d :

$$
I_{2}=I_{3}+I_{5} \text { and } 0=I_{2}-I_{3}-I_{5}
$$

We have six equations with six unknowns. Setting up a matrix gives:

$$
\left[\begin{array}{cccccc}
0 & 1 \Omega & 0 & 0 & 1 \Omega & 0 \\
0 & 1 \Omega & -1 \Omega & -1 \Omega & 0 & 0 \\
0 & 0 & 0 & 1 \Omega & 1 \Omega & -2 \Omega \\
1 & -1 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 & 0 & -1
\end{array}\right] \cdot\left[\begin{array}{c}
I \\
I_{1} \\
I_{2} \\
I_{3} \\
I_{4} \\
I_{5}
\end{array}\right]=\left[\begin{array}{c}
13 \mathrm{~V} \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

using matrix operations on a calculator: $I=11 \mathrm{~A}, I_{1}=6 \mathrm{~A}, I_{2}=5 \mathrm{~A}, I_{3}=1 \mathrm{~A}, I_{4}=7 \mathrm{~A}$, and $I_{5}=4 \mathrm{~A}$

Resistor	Resistance	Current	Voltage
R_{1}	1Ω	6 A	6 V
R_{2}	1Ω	5 A	5 V
R_{3}	1Ω	1 A	1 V
R_{4}	1Ω	7 A	7 V
R_{5}	2Ω	4 A	8 V

b.) The equivalent resistance is found using the current (I) from the battery. (Nothing is in parallel or series so ordinary methods for finding equivalent resistance will not work.)

$$
V=I R \quad \text { and } \quad \mathcal{E}=I R_{e q} \quad \text { so } \quad R_{e q}=\frac{\mathcal{E}}{I}=\frac{13 \mathrm{~V}}{11 \mathrm{~A}}=1.18 \Omega
$$

(Solution using Mesh Currents)

a.)

Applying Kirchhoff's Loop rule on Loop 1 (the loop containing I_{1}):

$$
\begin{equation*}
\mathcal{E}=I_{1}\left(R_{1}+R_{4}\right)-I_{2} R_{1}-I_{3} R_{4} \quad \text { or } \quad 13 \mathrm{~V}=I_{1}(2 \Omega)-I_{2}(1 \Omega)-I_{3}(1 \Omega) \tag{1}
\end{equation*}
$$

Applying Kirchhoff's Loop rule on Loop 2 (the loop containing I_{2}):

$$
\begin{equation*}
0=-I_{1} R_{1}+I_{2}\left(R_{1}+R_{2}+R_{3}\right)-I_{3} R_{3} \quad \text { or } \quad 0=-I_{1}(1 \Omega)+I_{2}(3 \Omega)-I_{3}(1 \Omega) \tag{2}
\end{equation*}
$$

Applying Kirchhoff's Loop rule on Loop 3 (the loop containing I_{3}):
$0=-I_{1} R_{4}-I_{2} R_{3}+I_{3}\left(R_{3}+R_{4}+R_{5}\right) \quad$ or $\quad 0=-I_{1}(1 \Omega)-I_{2}(1 \Omega)+I_{3}(4 \Omega)$
We have three equations with three unknowns. Setting up a matrix gives:

$$
\left[\begin{array}{ccc}
2 \Omega & -1 \Omega & -1 \Omega \\
-1 \Omega & 3 \Omega & -1 \Omega \\
-1 \Omega & -1 \Omega & 4 \Omega
\end{array}\right] \cdot\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=\left[\begin{array}{c}
13 \mathrm{~V} \\
0 \\
0
\end{array}\right]
$$

using matrix operations on a calculator: $I_{1}=11 \mathrm{~A}, I_{2}=5 \mathrm{~A}$, and $I_{3}=4 \mathrm{~A}$
for R_{1} the current through it is $I_{1}-I_{2}=11 \mathrm{~A}-5 \mathrm{~A}=6 \mathrm{~A}$
for R_{2} the current through it is $I_{2}=5 \mathrm{~A}$
for R_{3} the current through it is $I_{2}-I_{3}=5 \mathrm{~A}-4 \mathrm{~A}=1 \mathrm{~A}$
for R_{4} the current through it is $I_{1}-I_{3}=11 \mathrm{~A}-4 \mathrm{~A}=7 \mathrm{~A}$
for R_{5} the current through it is $I_{3}=4 \mathrm{~A}$
6.)

With no current through the galvanometer, the current through R_{1} and R_{3} is the same and equal to I_{1}.
Also, the current through R_{2} and R_{x} is the same and equal to I_{2}.
The potential at point c is the same as the potential at point d (There is no current through the meter, therefore there is no voltage drop since $\left.V_{G}=I_{G} R_{G}=0\right)$. Therefore, $V_{a c}=V_{a d}$ and $V_{c b}=V_{d b}$.

Using Ohm's Law:
for $R_{1} \quad V_{R 1}=V_{a c}=I_{1} R_{1} \quad$ and for $R_{2} \quad V_{R 2}=V_{a d}=I_{2} R_{2}$
since $V_{a c}=V_{a d}$ it follows that $\quad I_{1} R_{1}=I_{2} R_{2}$ or $\quad I_{1}=I_{2} \frac{R_{2}}{R_{1}} \quad$ (1)
for $R_{3} \quad V_{R 3}=V_{c b}=I_{1} R_{3}$ and for $R_{x} \quad V_{R x}=V_{d b}=I_{2} R_{x}$
since $V_{c b}=V_{d b}$ it follows that $I_{1} R_{3}=I_{2} R_{x}$ or $I_{1}=I_{2} \frac{R_{x}}{R_{3}}$
Comparing equations 1 and 2 it follows that: $\quad I_{2} \frac{R_{2}}{R_{1}}=I_{2} \frac{R_{x}}{R_{3}}$ and $\frac{R_{2}}{R_{1}}=\frac{R_{x}}{R_{3}}$
Therefore: $\quad R_{x}=\frac{R_{2} R_{3}}{R_{1}}$
Method 2:

When bridge is balanced there is no current through the galvanometer.
Therefore: $I_{2}=I_{3}$

Applying Kirchhoff's Loop rule on Loop 2 (the loop containing I_{2}):

$$
0=-I_{1} R_{1}+I_{2}\left(R_{1}+R_{2}\right)
$$

Applying Kirchhoff's Loop rule on Loop 3 (the loop containing I_{3}):

$$
\begin{equation*}
0=-I_{1} R_{3}+I_{3}\left(R_{3}+R_{x}\right)=-I_{1} R_{3}+I_{2}\left(R_{3}+R_{x}\right) \tag{2}
\end{equation*}
$$

From equation 1 it follows that: $\quad I_{2}=\frac{I_{1} R_{1}}{\left(R_{1}+R_{2}\right)}$ and from equation 2 it follows that: $\quad I_{2}=\frac{I_{1} R_{3}}{\left(R_{3}+R_{x}\right)}$
Therefore: $\frac{I_{1} R_{1}}{\left(R_{1}+R_{2}\right)}=\frac{I_{1} R_{3}}{\left(R_{3}+R_{x}\right)} \quad$ and $\quad R_{1}\left(R_{3}+R_{x}\right)=R_{3}\left(R_{1}+R_{2}\right) \quad$ and $\quad R_{1} R_{3}+R_{1} R_{x}=R_{3} R_{1}+R_{3} R_{2}$ so $\quad R_{1} R_{x}=R_{3} R_{2} \quad$ and $\quad R_{x}=\frac{R_{3} R_{2}}{R_{1}}$

HO 37 Solutions

Another look at Problem 3:
3.)

The equivalent resistance for the entire circuit is: $\quad R_{e q}=\frac{V_{12 \mathrm{~V}}}{I}=\frac{12 \mathrm{~V}}{2 \mathrm{~A}}=6 \Omega$

1.) $\quad R_{\text {coil }}=50.0 \Omega, I_{f s}=300 \mu \mathrm{~A}$
a.)

Ammeter reading 10 A full scale.
Voltage on $R_{\text {coil }}$ and $R_{\text {shunt }}$ are the same (they are parallel).

$$
\begin{aligned}
& V_{\text {coil }}=V_{\text {shunt }} \quad \text { or } \quad I_{f s} R_{\text {coil }}=I_{\text {shunt }} R_{\text {shunt }}=\left(I-I_{f s}\right) R_{\text {shunt }} \\
& R_{\text {shunt }}=\frac{I_{f s} R_{\text {coil }}}{\left(I-I_{f s}\right)}=\frac{\left(300 \times 10^{-6} \mathrm{~A}\right)(50 \Omega)}{\left(10 \mathrm{~A}-300 \times 10^{-6} \mathrm{~A}\right)}=1.5 \times 10^{-3} \Omega
\end{aligned}
$$

b.)

Voltmeter reading 500 V full scale.

$$
\begin{aligned}
& V_{a b}=V_{s}+V_{c o i l}=I_{f s} R_{\mathrm{s}}+I_{f s} R_{\text {coil }} \\
& R_{\mathrm{s}}=\frac{V_{a b}-I_{f s} R_{\text {coil }}}{I_{f s}}=\frac{\left(500 \mathrm{~V}-\left(300 \times 10^{-6} \mathrm{~A}\right)(50 \Omega)\right)}{\left(300 \times 10^{-6} \mathrm{~A}\right)}=1.67 \times 10^{6} \Omega
\end{aligned}
$$

2.)

a.) Voltmeter reads 44.6 V so $V_{a b}=44.6 \mathrm{~V}$.

$$
V_{a b}=I_{2} R \quad \text { so } \quad I_{2}=\frac{V_{a b}}{R}=\frac{44.6 \mathrm{~V}}{582 \Omega}=0.0766 \mathrm{~A}
$$

Applying Kirchhoff's Loop rule to loop with battery:

$$
90 \mathrm{~V}=44.6 \mathrm{~V}+I_{1}(429 \Omega) \quad \text { and } \quad I_{1}=\frac{(90 \mathrm{~V}-44.6 \mathrm{~V})}{(429 \Omega)}=0.1058 \mathrm{~A}
$$

At junction $a: \quad I_{1}=I_{2}+I_{3} \quad$ or $\quad I_{3}=I_{1}-I_{2}=0.1058 \mathrm{~A}-0.0766 \mathrm{~A}=0.0292 \mathrm{~A}$
Finally the meter is parallel to 582Ω resistor and has same voltage.

$$
V_{a b}=I_{3} R_{s} \quad \text { and } \quad R_{s}=\frac{V_{a b}}{I_{3}}=\frac{44.6 \mathrm{~V}}{0.0292 \mathrm{~A}}=1527 \Omega
$$

b.)

90 V

The meter resistance is parallel to 429Ω resistor and their equivalent resistance is:

$$
\frac{1}{R_{a b}}=\frac{1}{1527 \Omega}+\frac{1}{429 \Omega} \quad \text { and } \quad R_{a b}=334.9 \Omega
$$

This is in series with the 582Ω resistor so their equivalent resistance is:

$$
R_{e q}=334.9 \Omega+582 \Omega=916.9 \Omega
$$

Also: $\quad I_{1}=\frac{V_{90 \mathrm{~V}}}{R_{e q}}=\frac{90 \mathrm{~V}}{916.9 \Omega}=0.0982 \mathrm{~A}$
The voltmeter reads $V_{a b}$ and $V_{a b}=I_{1} R_{a b}=(0.0982 \mathrm{~A})(334.9 \Omega)=32.9 \mathrm{~V}$
3.)

The meters will deflect full-scale when the voltage across them is 150 V :
For meter 1: $\quad I_{f s 1}=\frac{V}{R_{1}}=\frac{150 \mathrm{~V}}{15 \times 10^{3} \Omega}=0.01 \mathrm{~A}$
For meter 2: $\quad I_{f s 2}=\frac{V}{R_{2}}=\frac{150 \mathrm{~V}}{150 \times 10^{3} \Omega}=0.001 \mathrm{~A}$
The actual current through each is: $\quad I=\frac{V_{120 \mathrm{v}}}{R_{1}+R_{2}}=\frac{120 \mathrm{~V}}{\left(15 \times 10^{3} \Omega+150 \times 10^{3} \Omega\right)}=7.27 \times 10^{-4} \mathrm{~A}$
Reading on each meter will be: $\quad V_{\text {meter }}=V_{f s}\left(\frac{I}{I_{f s}}\right)$
so $\quad V_{\text {meter } 1}=V_{f s 1}\left(\frac{I}{I_{f s 1}}\right)=(150 \mathrm{~V})\left(\frac{7.27 \times 10^{-4} \mathrm{~A}}{0.01 \mathrm{~A}}\right)=10.9 \mathrm{~V}$
and $\quad V_{\text {meter } 2}=V_{f s 2}\left(\frac{I}{I_{f s 2}}\right)=(150 \mathrm{~V})\left(\frac{7.27 \times 10^{-4} \mathrm{~A}}{0.001 \mathrm{~A}}\right)=109.1 \mathrm{~V}$
(Note that the sum is 120 V)
4.)

Applying Kirchhoff's Loop rule: $\quad V_{100 \mathrm{v}}=I r+I R_{s}$

$$
I=\frac{V_{100 \mathrm{~V}}}{\left(r+R_{s}\right)}=\frac{100 \mathrm{~V}}{(5.83 \Omega+478 \Omega)}=0.207 \mathrm{~A}
$$

The terminal voltage $V_{a b}$ is: $\quad V_{a b}=V_{100 \mathrm{v}}-I r=100 \mathrm{~V}-(0.207 \mathrm{~A})(5.83 \Omega)=98.8 \mathrm{~V}$
5.)

a.) Applying Kirchhoff's Junction rule at junction a :

$$
6 \mathrm{~A}=I+4 \mathrm{~A} \quad \text { so } \quad I=6 \mathrm{~A}-4 \mathrm{~A}=2 \mathrm{~A}
$$

b.) The 3Ω resistor is parallel to the 28 V battery and R so they have the same voltage.

$$
\begin{aligned}
& \quad V_{3 \Omega}=I R=(6 \mathrm{~A})(3 \Omega)=18 \mathrm{~V} \quad \text { and } \quad V_{3 \Omega}=V_{28 \mathrm{~V}}-I R \\
& \text { Therefore: } \quad R=\frac{\left(V_{28 \mathrm{~V}}-V_{3 \Omega}\right)}{I}=\frac{(28 \mathrm{~V}-18 \mathrm{~V})}{2 \mathrm{~A}}=5 \Omega
\end{aligned}
$$

c.) The 3Ω resistor is also parallel to emf \mathcal{E} and the 6Ω resistor so they have the same voltage.
d.)

Applying Kirchhoff's Loop rule: $\quad V_{28 \mathrm{~V}}=V_{R}+V_{3 \Omega}=I R+I R_{3 \Omega}$

$$
I=\frac{V_{28 \mathrm{~V}}}{\left(R+R_{3 \Omega}\right)}=\frac{28 \mathrm{~V}}{(5 \Omega+3 \Omega)}=3.5 \mathrm{~A}
$$

This reduces to :

and finally:

The current from the battery is: $\quad I=\frac{V_{36 \mathrm{~V}}}{R_{e q}}=\frac{36 \mathrm{~V}}{4.5 \Omega}=8 \mathrm{~A}$ and this is split equally between the 9Ω equivalents.

So: $\quad V_{a}=V_{36 \mathrm{~V}}-V_{6 \Omega}=V_{36 \mathrm{~V}}-I_{6 \Omega} R_{6 \Omega}=36 \mathrm{~V}-(4 \mathrm{~A})(6 \Omega)=12 \mathrm{~V}$

$$
V_{b}=V_{36 \mathrm{~V}}-V_{3 \Omega}=V_{36 \mathrm{~V}}-I_{3 \Omega} R_{3 \Omega}=36 \mathrm{~V}-(4 \mathrm{~A})(3 \Omega)=24 \mathrm{~V}
$$

It follows that: $\quad V_{a b}=V_{a}-V_{b}=12 \mathrm{~V}-24 \mathrm{~V}=-12 \mathrm{~V}$
b.) Closing the switch the circuit becomes:

The circuit is like the bridge circuit on HO 36 with nothing in parallel or series.
Applying Kirchhoff's Loop rule on Loop 1:

$$
36 \mathrm{~V}=I_{2}(6 \Omega)+I_{5}(3 \Omega)
$$

Applying Kirchhoff's Loop rule on Loop 2:

$$
\begin{equation*}
0=I_{3}(3 \Omega)+I_{4}(3 \Omega)-I_{2}(6 \Omega) \tag{2}
\end{equation*}
$$

6.) b.)

Applying Kirchhoff's Loop rule on Loop 3:

$$
0=I_{4}(3 \Omega)+I_{5}(3 \Omega)-I_{6}(6 \Omega)
$$

Applying Kirchhoff's Junction rule on junction c :

$$
I_{1}=I_{2}+I_{3} \text { and } 0=I_{1}-I_{2}-I_{3}
$$

Applying Kirchhoff's Junction rule on junction a :

$$
I_{2}+I_{4}=I_{5} \text { and } 0=I_{2}+I_{4}-I_{5}
$$

Applying Kirchhoff's Junction rule on junction b :

$$
I_{3}=I_{4}+I_{6} \text { and } 0=I_{3}-I_{4}-I_{6}
$$

We have six equations with six unknowns. Setting up a matrix gives:

$$
\left[\begin{array}{cccccc}
0 & 6 \Omega & 0 & 0 & 3 \Omega & 0 \\
0 & 0 & 0 & 3 \Omega & 3 \Omega & -6 \Omega \\
0 & -6 \Omega & 3 \Omega & 3 \Omega & 0 & 0 \\
1 & -1 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 & 0 & -1
\end{array}\right] \cdot\left[\begin{array}{c}
I_{1} \\
I_{2} \\
I_{3} \\
I_{4} \\
I_{5} \\
I_{6}
\end{array}\right]=\left[\begin{array}{c}
36 \mathrm{~V} \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

using matrix operations on a calculator: $I_{1}=8.57 \mathrm{~A}, I_{2}=3.43 \mathrm{~A}, I_{3}=5.14 \mathrm{~A}, I_{4}=1.71 \mathrm{~A}, I_{5}=5.14 \mathrm{~A}$, and $I_{6}=3.43 \mathrm{~A}$
The current through the switch is : $\quad I_{\text {switch }}=I_{4}=1.71 \mathrm{~A}$
c.) The equivalent resistance is found using the current $\left(I_{1}\right)$ from the battery. (Nothing is in parallel or series so ordinary methods for finding equivalent resistance will not work.)

$$
V=I R \quad \text { and } \quad V_{36 \mathrm{~V}}=I_{1} R_{e q} \text { so } \quad R_{e q}=\frac{V_{36 \mathrm{~V}}}{I_{1}}=\frac{36 \mathrm{~V}}{8.57 \mathrm{~A}}=4.20 \Omega
$$

(Solution using Mesh Currents)

b.) Closing the switch the circuit becomes:

The circuit is like the bridge circuit on HO 36 with nothing in parallel or series. Using Loop Method:
Applying Kirchhoff's Loop rule on Loop 1 (the loop containing I_{1}):

$$
36 \mathrm{~V}=I_{1}(9 \Omega)-I_{2}(6 \Omega)-I_{3}(3 \Omega)
$$

Applying Kirchhoff's Loop rule on Loop 2 (the loop containing I_{2}):

$$
\begin{equation*}
0=-I_{1}(6 \Omega)+I_{2}(12 \Omega)-I_{3}(3 \Omega) \tag{2}
\end{equation*}
$$

Applying Kirchhoff's Loop rule on Loop 3 (the loop containing I_{3}):

$$
0=-I_{1}(3 \Omega)-I_{2}(3 \Omega)+I_{3}(12 \Omega)
$$

We have three equations with three unknowns. Setting up a matrix gives:

$$
\left[\begin{array}{ccc}
9 \Omega & -6 \Omega & -3 \\
-6 \Omega & 12 \Omega & -3 \\
-3 \Omega & -3 \Omega & 12 \Omega
\end{array}\right] \cdot\left[\begin{array}{c}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=\left[\begin{array}{c}
36 \mathrm{~V} \\
0 \\
0
\end{array}\right]
$$

using matrix operations on a calculator: $I_{1}=8.57 \mathrm{~A}, I_{2}=5.14 \mathrm{~A}$, and $I_{3}=3.43 \mathrm{~A}$
The current through the switch is : $\quad I_{\text {switch }}=I_{2}-I_{3}=5.14 \mathrm{~A}-3.43 \mathrm{~A}=1.71 \mathrm{~A}$
7.) $R C[=] \Omega \cdot \mathrm{F}[=] \frac{\mathrm{V}}{\mathrm{A}} \frac{\mathrm{C}}{\mathrm{V}}[=] \frac{\mathrm{C}}{\left(\frac{\mathrm{C}}{\mathrm{s}}\right)}[=] \mathrm{s}$
8.)

At time $t=0, I_{\mathrm{o}}=8.6 \times 10^{-4} \mathrm{~A}, Q_{\mathrm{o}}=0$, and $R C=5.7 \mathrm{~s}=\tau$.
When switch is closed uncharged capacitor has no resistance and

$$
\begin{array}{ll}
\mathcal{E}=I_{\mathrm{o}} R & \text { so } \quad R=\frac{\mathcal{E}}{I_{\mathrm{o}}}=\frac{200 \mathrm{~V}}{8.6 \times 10^{-4} \mathrm{~A}}=2.33 \times 10^{5} \Omega \\
R C=\tau \quad \text { so } \quad C=\frac{\tau}{R}=\frac{5.7 \mathrm{~s}}{2.33 \times 10^{5} \Omega}=2.45 \times 10^{-5} \mathrm{~F}
\end{array}
$$

9.)

$Q_{\mathrm{o}}=0$
Find the time for the current to decay to $i=0.0185 \mathrm{~A}$.
For charging: $\quad i(t)=I_{0} \mathrm{e}^{-\frac{t}{R C}}=\frac{\mathcal{E}}{R} \mathrm{e}^{-\frac{t}{R C}}$
The time that the current is 0.0185 A is:

$$
t=-R C \ln \left(\frac{R i(t)}{\mathcal{E}}\right)=-\left(7.25 \times 10^{3} \Omega\right)\left(3.4 \times 10^{-6} \mathrm{~F}\right) \ln \left(\frac{\left(7.25 \times 10^{3} \Omega\right)(0.0185 \mathrm{~A})}{180 \mathrm{~V}}\right)=7.25 \times 10^{-3} \mathrm{~s}
$$

The charge on the capacitor is:

$$
q(t)=Q_{f}\left(1-\mathrm{e}^{-\frac{t}{R C}}\right)=C \mathcal{E}\left(1-\mathrm{e}^{-\frac{t}{R C}}\right)=\left(3.4 \times 10^{-6} \mathrm{~F}\right)(180 \mathrm{~V})\left(1-\mathrm{e}^{-\frac{7.25 \times 10^{-3} \mathrm{~s}}{\left(7.25 \times 10^{3} \Omega\right)\left(3.4 \times 10^{-6} \mathrm{~F}\right)}}\right)=1.56 \times 10^{-4} \mathrm{C}
$$

9.)

Method 2:

Realizing that the sum of the voltage on the capacitor and resistor must always be 180 V and at the time when $i=0.0185 \mathrm{~A}$:

$$
\begin{aligned}
& v_{R}=i R=(0.0185 \mathrm{~A})\left(7.25 \times 10^{3} \Omega\right)=134.1 \mathrm{~V} \\
& \mathcal{E}=v_{R}+v_{C} \quad \text { so } \quad v_{C}=\mathcal{E}-v_{R} v_{C}=180 \mathrm{~V}-134.1 \mathrm{~V}=45.9 \mathrm{~V}
\end{aligned}
$$

The charge is $q_{C}=C v_{C}=\left(3.4 \times 10^{-6} \mathrm{~F}\right)(45.9 \mathrm{~V})=1.56 \times 10^{-4} \mathrm{C}$
10.)

On capacitor $V_{\mathrm{o}}=15 \mathrm{~V}$ and after 5.00 s voltmeter reads 5.0 V .
The voltmeter reads the voltage on the capacitor so at $t=5 \mathrm{~s}, v_{C}=5.0 \mathrm{~V}$.

While discharging the voltage on the capacitor is: $\quad v(t)=V_{0} \mathrm{e}^{-\frac{t}{R C}}$
Solving for C :

$$
\begin{gathered}
\ln \left(\frac{v(t)}{V_{\mathrm{o}}}\right)=-\frac{t}{R C} \\
\text { so } \quad C=\frac{-t}{R \ln \left(\frac{v(t)}{V_{\mathrm{o}}}\right)}=\frac{-5 \mathrm{~s}}{\left(2.25 \times 10^{6} \Omega\right) \ln \left(\frac{5 \mathrm{~V}}{15 \mathrm{~V}}\right)}=2.02 \times 10^{-6} \mathrm{~F}
\end{gathered}
$$

1.)

Right after the switch is closed.
a.) The capacitor is uncharged and $v_{C}=\frac{Q}{C}=0$
b.) The voltage across the resistor $v_{R}=\mathcal{E}=273 \mathrm{~V}$
c.) The charge on the capacitor $q=Q_{\mathrm{o}}=0$
d.) The current through the resistor $i_{R}=\frac{v_{R}}{R}=\frac{\mathcal{E}}{R}=\frac{273 \mathrm{~V}}{6.03 \times 10^{3} \Omega}=0.0453 \mathrm{~A}$

a.) The voltage across the capacitor $v_{C}=\mathcal{E}=273 \mathrm{~V}$
b.) The voltage across the resistor $v_{R}=i R=0$

A long time after the switch is closed.
c.) The charge on the capacitor $q=Q_{f}=C \mathcal{E}=\left(6.74 \times 10^{-6} \mathrm{~F}\right)(273 \mathrm{~V})=1.84 \times 10^{-3} \mathrm{C}$
d.) The current through the resistor $i_{R}=0$
2.)
$C=7.50 \mu \mathrm{~F}, \mathcal{E}=36.0 \mathrm{~V}$
a.) $Q_{f}=C \mathcal{E}=\left(7.5 \times 10^{-6} \mathrm{~F}\right)(36 \mathrm{~V})=2.7 \times 10^{-4} \mathrm{C}$
b.) $q(t)=Q_{f}\left(1-\mathrm{e}^{\frac{-t}{R C}}\right) \quad$ so $\quad \ln \left(1-\frac{q(t)}{Q_{f}}\right)=\frac{-t}{R C}$
and $R=\frac{-t}{C \ln \left(1-\frac{q(t)}{Q_{f}}\right)}=\frac{-\left(3 \times 10^{-3} \mathrm{~s}\right)}{\left(7.5 \times 10^{-6} \mathrm{~F}\right) \ln \left(1-\frac{\left(225 \times 10^{-6} \mathrm{C}\right)}{\left(270 \times 10^{-6} \mathrm{C}\right)}\right)}=223 \Omega$
c.) $q(t)=Q_{f}\left(1-\mathrm{e}^{\frac{-t}{R C}}\right) \quad$ so $\quad \ln \left(1-\frac{q(t)}{Q_{f}}\right)=\frac{-t}{R C}$
and $\quad t=-R C \ln \left(1-\frac{q(t)}{Q_{f}}\right)=-(223 \Omega)\left(7.5 \times 10^{-6} \mathrm{~F}\right) \ln \left(1-\frac{0.99 Q_{f}}{Q_{f}}\right)=7.70 \times 10^{-3} \mathrm{~s}$
3.)

$$
\text { HO } 39 \text { Solutions }
$$

4.)

At steady state.
a.) At steady state the capacitor is fully charged and current has decayed to zero.

The current through the $3.0 \mathrm{k} \Omega$ resistor $i_{2}=0$
The current through the $15 \mathrm{k} \Omega$ and the $12 \mathrm{k} \Omega$ resistors is the same since they are in series.

$$
i_{1}=\frac{V_{9 V}}{R_{e q}}=\frac{9 \mathrm{~V}}{(15,000 \Omega+12,000 \Omega)}=3.33 \times 10^{-4} \mathrm{~A}
$$

b.) The voltage on the capacitor is the voltage on $15 \mathrm{k} \Omega$ resistor. (No voltage drop on $3 \mathrm{k} \Omega$ resistor.)

$$
\begin{array}{ll}
\qquad v_{C}=v_{R 2}=i_{1} R_{2}=\left(3.33 \times 10^{-4} \mathrm{~A}\right)(15,000 \Omega)=5 \mathrm{~V} \\
\text { The charge is: } & q_{C}=C v_{C}=\left(10 \times 10^{-6} \mathrm{~F}\right)(5 \mathrm{~V})=5.0 \times 10^{-5} \mathrm{C}
\end{array}
$$

c.) When the switch is open the capacitor discharges into the series combination of the $3 \mathrm{k} \Omega$ and $15 \mathrm{k} \Omega$ resistor.

$$
i_{2}=I_{\mathrm{o}} \mathrm{e}^{\frac{-t}{R_{e q} C}}=\frac{v_{C}(0)}{R_{e q}} \mathrm{e}^{\frac{-t}{R_{e q} C}}=\frac{5 \mathrm{~V}}{(15,000 \Omega+3000 \Omega)} \mathrm{e}^{\frac{-t}{(15,000 \Omega+3000 \Omega)\left(10 \times 10^{-6} \mathrm{~F}\right)}}=\left(2.78 \times 10^{-4} \mathrm{~A}\right) \mathrm{e}^{\frac{-t}{(0.18 \mathrm{~s})}}
$$

d.) $q(t)=Q_{\mathrm{o}} \mathrm{e}^{\frac{-t}{R_{e q} C}} \quad$ so $\ln \left(\frac{q(t)}{Q_{\mathrm{o}}}\right)=\frac{-t}{R_{e q} C}$
and $\quad t=-R_{e q} C \ln \left(\frac{q(t)}{Q_{\mathrm{o}}}\right)=-(18,000 \Omega)\left(10 \times 10^{-6} \mathrm{~F}\right) \ln \left(\frac{0.2 Q_{\mathrm{o}}}{Q_{\mathrm{o}}}\right)=0.29 \mathrm{~s}$

> a.) $q(t)=Q_{f}\left(1-\mathrm{e}^{\frac{-t}{R C}}\right)=C \mathcal{E}\left(1-\mathrm{e}^{\frac{-t}{R C}}\right)=\left(40 \times 10^{-6} \mathrm{~F}\right)(24 \mathrm{~V})\left(1-\mathrm{e}^{\frac{-(0.05 \mathrm{~s})}{(950 \Omega)\left(40 \times 10^{-6} \mathrm{~F}\right)}}\right)=7.02 \times 10^{-4} \mathrm{C}$
> b.) $v_{C}=\frac{q}{C}=\frac{\left(7.02 \times 10^{-4} \mathrm{C}\right)}{\left(40 \times 10^{-6} \mathrm{~F}\right)}=17.6 \mathrm{~V} \quad$ and $\quad \mathcal{E}=v_{R}+v_{C} \quad$ or $\quad v_{R}=\mathcal{E}-v_{C}=24 \mathrm{~V}-17.6 \mathrm{~V}=6.4 \mathrm{~V}$
> c.) $v_{C}=\frac{q}{C}=\frac{\left(7.02 \times 10^{-4} \mathrm{C}\right)}{\left(40 \times 10^{-6} \mathrm{~F}\right)}=17.6 \mathrm{~V} \quad$ and $\quad 0=v_{R}+v_{C} \quad$ or $\quad v_{R}=-v_{C}=-17.6 \mathrm{~V}$
> d.) $q(t)=Q_{0} \mathrm{e}^{\frac{-t}{R C}}=\left(7.02 \times 10^{-4} \mathrm{C}\right) \mathrm{e}^{\frac{-(0.05 \mathrm{~s})}{(950 \Omega)\left(40 \times 10^{-6} \mathrm{~F}\right)}}=1.88 \times 10^{-4} \mathrm{C}$
5.)

The circuit is equivalent to: (resistors in series capacitors in series.)

a.) time constant is $\tau=R_{e q} C_{e q}=(6 \Omega)\left(2 \times 10^{-6} \mathrm{~F}\right)=1.2 \times 10^{-5} \mathrm{~s}$
b.) The final charge on the $3 \mu \mathrm{C}$ capacitor is the same as the final charge on its equivalent.

$$
Q_{f}=C_{e q} V=\left(2 \times 10^{-6} \mathrm{~F}\right)(12 \mathrm{~V})=2.4 \times 10^{-5} \mathrm{C}
$$

The charge at any time is: $\quad q(t)=Q_{f}\left(1-\mathrm{e}^{\frac{-t}{R_{e q} C_{e q}}}\right)$ (both capacitors have same charge at all times)
So the voltage on the $3 \mu \mathrm{C}$ capacitor at any time is: $\quad v(t)=\frac{Q_{f}}{C}\left(1-\mathrm{e}^{\frac{-t}{R_{e q} C_{e q}}}\right)$
When $t=\tau$ the voltage on the $3 \mu \mathrm{C}$ capacitor is:

$$
v(\tau)=\frac{\left(2.4 \times 10^{-5} \mathrm{C}\right)}{\left(3 \times 10^{-6} \mathrm{~F}\right)}\left(1-\mathrm{e}^{-1}\right)=5.06 \mathrm{~V}
$$

6.)

After a long time, capacitor is fully charged.
a.) When the capacitor is fully charged, no current passes through it.

$$
\begin{aligned}
& i_{1}=\frac{V}{R}=\frac{10 \mathrm{~V}}{(1 \Omega+4 \Omega)}=2 \mathrm{~A} \quad \text { and } \quad i_{2}=\frac{V}{R}=\frac{10 \mathrm{~V}}{(8 \Omega+2 \Omega)}=1 \mathrm{~A} \\
& V_{a}=V_{10 V}-V_{1 \Omega}=10 \mathrm{~V}-(2 \mathrm{~A})(1 \Omega)=8 \mathrm{~V} \quad \text { and } \quad V_{b}=V_{10 V}-V_{8 \Omega}=10 \mathrm{~V}-(1 \mathrm{~A})(8 \Omega)=2 \mathrm{~V}
\end{aligned}
$$

The voltage on the capacitor is: $V_{a}-V_{b}=8 \mathrm{~V}-2 \mathrm{~V}=6 \mathrm{~V}$
b.)

The equivalent circuit while discharging.

$$
v(t)=V_{\mathrm{o}} \mathrm{e}^{\frac{-t}{R_{e q C}}} \quad \text { or } \quad t=-R_{e q} C \ln \left(\frac{v(t)}{V_{\mathrm{o}}}\right)=-(3.6 \Omega)\left(1 \times 10^{-6} \mathrm{~F}\right) \ln \left(\frac{0.1 V_{\mathrm{o}}}{V_{\mathrm{o}}}\right)=8.29 \times 10^{-6} \mathrm{~s}
$$

