AP Physics 1
 Impulse and Momentum Practice Problems

1.) A 0.144 kg baseball is pitched horizontally at $+38 \mathrm{~m} / \mathrm{s}$. After it is hit by a bat, it moves horizontally at $-38 \mathrm{~m} / \mathrm{s}$.
a.) What impulse did the bat deliver to the ball?
b.) If the bat and ball were in contact for 0.80 ms , what was the average force the bat exerted on the ball?
2.) Rat hits a stationary 0.12 kg hockey puck with a force that lasts for $1.0 \times 10^{-2} \mathrm{~s}$ and makes the puck shoot across the ice with a speed of $20.0 \mathrm{~m} / \mathrm{s}$, scoring a goal for her team. With what force did Rat hit the puck?
3.) Larry hits a 0.050 kg golf ball, giving it a speed of $75 \mathrm{~m} / \mathrm{s}$. What impulse does he impart to the ball?
4.) A 0.060 kg tennis ball traveling at $10.0 \mathrm{~m} / \mathrm{s}$ is returned by Laura. It leaves her racket with a speed of $36.0 \mathrm{~m} / \mathrm{s}$ in the opposite direction from where it came.
a.) What is the change in momentum of the tennis ball?
b.) If the ball is in contact with the racket for 0.020 s , with what average force did Laura hit the ball?
5.) A $10,000 \mathrm{~kg}$ freight car is rolling along a track at $3.00 \mathrm{~m} / \mathrm{s}$. Find the time needed for a force of 1000 N to stop the car.
6.) A 0.200 kg baseball is traveling at $40.0 \mathrm{~m} / \mathrm{s}$. The ball is struck by a bat that exerts an average force of -9000 N during the 0.002 seconds in which it is in contact with the ball. Find the velocity of the batted ball.
7.) A 1 kg hammer slams down on a nail at $5.0 \mathrm{~m} / \mathrm{s}$ and bounces off at $1.0 \mathrm{~m} / \mathrm{s}$. If the impact lasts 1.0 ms , what average force is exerted on the nail?
8.) A 2.4 kg ball falling vertically hits the floor with a speed of $2.5 \mathrm{~m} / \mathrm{s}$ and rebounds with a speed of $1.5 \mathrm{~m} / \mathrm{s}$.
a.) What is the magnitude of the impulse exerted on the ball by the floor?
b.) If the ball is contact with the floor for 5.0 ms , what is the magnitude of the force exerted by the floor?
9.) A 0.16 kg baseball is thrown with a speed of $40 \mathrm{~m} / \mathrm{s}$. It is hit straight back at the pitcher with a speed of $80 \mathrm{~m} / \mathrm{s}$. What is the magnitude of the impulse exerted on the ball by the bat?
10.) An 8.0 kg object moving $4.0 \mathrm{~m} / \mathrm{s}$ in the positive x-direction has a one-dimensional collision with a 2.0 kg object moving $3.0 \mathrm{~m} / \mathrm{s}$ in the opposite direction. The final velocity of the 8.0 kg object is $2.0 \mathrm{~m} / \mathrm{s}$ in the positive x-direction.
a.) What is the velocity of the 2.0 kg object following the collision?
b.) What is the total kinetic energy of the two-mass system after the collision?
11.) A 2.0 kg object moving with a velocity of $5.0 \mathrm{~m} / \mathrm{s}$ in the positive x-direction strikes and sticks to a 3.0 kg object moving with a speed of $2.0 \mathrm{~m} / \mathrm{s}$ in the same direction.
a.) What is the speed of the objects following the collision?
b.) How much kinetic energy is lost in the collision?
12.) A 2400 kg van runs into the back of a 600 kg compact car at rest. They move off together at $10 \mathrm{~m} / \mathrm{s}$. Assuming no friction with the ground, find the initial speed of the van.
13.) A railroad car with a mass of $10,000 \mathrm{~kg}$ is coasting along at $20 \mathrm{~m} / \mathrm{s}$. It strikes a second car, initially at rest, with a mass of $15,000 \mathrm{~kg}$. The cars couple and move off together. Find the change in kinetic energy.
14.) A 10 kg block, initially at rest, explodes into two pieces. If a 4.0 kg piece moves toward the east at $12 \mathrm{~m} / \mathrm{s}$, find the velocity of the second piece.
15.) A 6.0 kg object is moving east at $5.0 \mathrm{~m} / \mathrm{s}$ when it collides with and sticks to a 2.0 kg object. After the collision the composite object is moving west at $2.0 \mathrm{~m} / \mathrm{s}$. Determine the velocity of the 2.0 kg object before the collision.
16.) A 5.0 kg object with a speed of $4.0 \mathrm{~m} / \mathrm{s}$ collides head-on with a 10 kg object moving toward it with a speed of $3.0 \mathrm{~m} / \mathrm{s}$.
a.) If the 10 kg object stops after the collision, what is the final speed of the 5.0 kg object?
b.) Is this an elastic or inelastic collision?
17.) Two identical balls with masses of 0.17 kg collide head on. The initial velocity of one is $4.0 \mathrm{~m} / \mathrm{s}$, while that of the other is $-3.0 \mathrm{~m} / \mathrm{s}$. If the collision is perfectly elastic, what is the final velocity of each ball?
18.) Two objects collide head on in a perfectly elastic collision. The first object has a mass of 5.0 kg and an initial velocity of $4.0 \mathrm{~m} / \mathrm{s}$. The second object has a mass of 3.0 kg and is initially at rest. Find the final velocities of both objects.
19.) Two objects collide head-on in a perfectly elastic collision. The first object has a mass of 6.0 kg and an initial velocity of $4.0 \mathrm{~m} / \mathrm{s}$. The second object has a mass of 4.0 kg and an initial velocity of $-6.0 \mathrm{~m} / \mathrm{s}$. Find the final velocities of both objects.
20.) Two objects collide in a perfectly elastic collision. The first object has a mass of 3.0 kg and an initial velocity of $7.0 \mathrm{~m} / \mathrm{s}$. The second object has a mass of 6.0 kg and an initial velocity of $4.0 \mathrm{~m} / \mathrm{s}$. Find the final velocities of both objects.

