AP Physics 1
 Oscillation Practice Problems

1.) A spring oscillates with a period of 0.50 s when a mass of 0.60 kg is hung on it. What will the period be if only 0.30 kg is hung on it?
2.) A 7.00 kg mass is hung from the bottom end of a vertical spring fastened to an overhead beam. The mass is set into vertical oscillations having a period of 2.60 s . Find the force constant of the spring.
3.) A 0.500 kg mass at the end of a spring vibrates 3.0 times per second with an amplitude of 0.15 m . Determine
a.) the velocity when it passes the equilibrium point
b.) the total energy of the system
c.) the equations describing the position x, velocity v, and acceleration a of the mass, assuming that at $t=0, x$ was a maximum
4.) A 0.200 kg mass is attached to a spring and executes simple harmonic motion with a period of 0.250 s . If the total energy of the system is 2.00 J , find
a.) the force constant of the spring
b.) the amplitude of the motion
5.) Find the mass that oscillates with a period of 0.350 s when attached to a spring with a force constant of $10.0 \mathrm{~N} / \mathrm{m}$.
6.) A simple pendulum with a length of 2.00 m oscillates in a location where $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$. How many complete oscillations does it make in 5.00 minutes?
7.) A 0.250 kg mass oscillates on a spring and its x-position is described by the equation: $x=(0.240 \mathrm{~m}) \cos \left(12.0 \frac{\mathrm{rad}}{\mathrm{s}} t\right)$. Find
a.) the period of oscillation
b.) the force constant of the spring
c.) the total energy of the mass-spring system
d.) the speed of the mass at the equilibrium position
8.) A 0.500 kg mass attached to a spring with force constant $k=20.0 \mathrm{~N} / \mathrm{m}$ oscillates in simple harmonic motion. If the total energy of the mass-spring system is 2.00 J find
a.) the maximum velocity
b.) the amplitude of the motion
9.) The acceleration due to gravity on Mars is $3.7 \mathrm{~m} / \mathrm{s}^{2}$.
a.) What length pendulum has a period of one second period on Earth? What length pendulum has a one second period on Mars?
b.) A mass is suspended from a spring with a force constant of $10 \mathrm{~N} / \mathrm{m}$. Find the mass suspended from this spring that would result in a one second period on Earth and on Mars.
10.) What is the period that a simple pendulum with a length of 2.50 m on the surface of the Earth
11.) A 1.50 m simple pendulum has a period of 5.00 s on the surface of Planet X . What is the acceleration due to gravity on the surface of Planet X ?

