Fundamental SI Units (mks)

Pre-AP Physics	Quantity	Name	Abbreviation
	length	meter	m
	mass	kilogram	kg
Mathematics Preliminaries	time	second	s
	temperature	kelvin	K

Derived Units

Derived units are combinations of fundamental units.

Quantity		Name	Abbreviation
area	square meter	m^{2}	
volume	cubic meter	m^{3}	
density	kilogram per cubic meter	$\mathbf{k g} / \mathrm{m}^{\mathbf{3}}$	
	land		

Scientific Notation

A number that is expressed as a numerical part that is between 1 and 9 multiplied by a wholenumber power of of 10 .

SI Prefixes

Factor	Prefix	Abbreviation
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	$\boldsymbol{\mu}$
10^{-9}	nano	n

Rules for Significant Figures

All non-zero digits in a measurement.
All final zeros after the decimal place.
All zeros between two other significant figures.
Zeros used for spacing the decimal point are not significant.

Examples:

1004	$\mathbf{0 . 0 0 8}$	$\mathbf{0 . 0 0 2 0 0 5}$
12.0	$\mathbf{2 , 0 0 1 , 0 0 0}$	$\mathbf{5 0 . 3 5}$
	Math Intro	

Operations and Significant Figures

Addition and Subtraction are limited by the least precise number.

Add or subtract the numbers and then round the result to correspond to the least precise value involved.

Example:

$$
\begin{aligned}
24.686 \mathrm{~m}+2.343 \mathrm{~m}+3.21 \mathrm{~m} & =30.239 \mathrm{~m} \\
& =30.24 \mathrm{~m}
\end{aligned}
$$

Quadratic Formula

For an equation of the form:

$$
a x^{2}+b x+c=0
$$

The solution is:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Graphing Data

- Use pencil only
- Descriptive title
- y vs x
- Label each axis with the quantity and unit
- Scale each axis independently(from $(0,0))$ so that the maximum amount of real estate is used
- Draw a line (or smooth curve) of best fit through the data points. Do not assume that the line passes through the origin. NEVER EVER DRAW DOT-TO-DOT.

